模型:
timm/volo_d5_512.sail_in1k
VOLO (Vision Outlooker) 图像分类模型。由论文作者进行了 ImageNet-1k 的训练,并使用了标记标记。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('volo_d5_512.sail_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'volo_d5_512.sail_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1025, 768) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
@article{yuan2022volo, title={Volo: Vision outlooker for visual recognition}, author={Yuan, Li and Hou, Qibin and Jiang, Zihang and Feng, Jiashi and Yan, Shuicheng}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022}, publisher={IEEE} }