模型:

timm/volo_d5_512.sail_in1k

英文

volo_d5_512.sail_in1k 模型卡片

VOLO (Vision Outlooker) 图像分类模型。由论文作者进行了 ImageNet-1k 的训练,并使用了标记标记。

模型详细信息

  • 模型类型:图像分类/特征提取
  • 模型统计数据:
    • 参数数量(百万):296.1
    • GMACs:425.1
    • 激活量(百万):1105.4
    • 图像尺寸:512 x 512
  • 相关论文:
  • 数据集:ImageNet-1k
  • 原始训练集: https://github.com/sail-sg/volo

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('volo_d5_512.sail_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'volo_d5_512.sail_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1025, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

引用

@article{yuan2022volo,
  title={Volo: Vision outlooker for visual recognition},
  author={Yuan, Li and Hou, Qibin and Jiang, Zihang and Feng, Jiashi and Yan, Shuicheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022},
  publisher={IEEE}
}