模型:
timm/tresnet_m.miil_in21k
一种TResNet图像分类模型。该模型是由论文作者在ImageNet-21K-P("ImageNet-21K Pretraining for the Masses",ImageNet-22k的11k子集)上训练得到的。
这个模型的权重已经经过重新映射和修改,以适用于标准的BatchNorm而不是InplaceABN。最近,使用inplace_abn构建可能会出现问题,并且在memory_format=channels_last、torch.compile()等方面会变得更慢。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tresnet_m.miil_in21k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tresnet_m.miil_in21k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 1024, 14, 14]) # torch.Size([1, 2048, 7, 7]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tresnet_m.miil_in21k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
@misc{ridnik2020tresnet, title={TResNet: High Performance GPU-Dedicated Architecture}, author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman}, year={2020}, eprint={2003.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} }
@misc{ridnik2021imagenet21k, title={ImageNet-21K Pretraining for the Masses}, author={Tal Ridnik and Emanuel Ben-Baruch and Asaf Noy and Lihi Zelnik-Manor}, year={2021}, eprint={2104.10972}, archivePrefix={arXiv}, primaryClass={cs.CV} }