英文

seresnextaa101d_32x8d.ah_in1k 的模型卡片

一个带有Squeeze-and-Excitation通道注意力的SE-ResNeXt-D(Rectangle-2 Anti-Aliasing)图像分类模型。

此模型特点如下:

  • ReLU激活
  • 3层由3x3卷积和池化组成的干细胞
  • 2x2平均池化 + 1x1转换步长为快捷方式
  • 分组3x3减少瓶颈卷积
  • Squeeze-and-Excitation通道注意力

通过timm在ImageNet-1k上使用下列模板进行训练。

模板详情:

  • 基于原始的 ResNet Strikes Back A1模板
  • LAMB优化器
  • 没有CutMix。比原始A1模板使用更强的dropout、随机深度和RandAugment
  • 余弦学习率调度与预热

模型细节

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('seresnextaa101d_32x8d.ah_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnextaa101d_32x8d.ah_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnextaa101d_32x8d.ah_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索该模型的数据集和运行时指标 model results

model img_size top1 top5 param_count gmacs macts img/sec
12319321 320 86.72 98.17 93.6 35.2 69.7 451
12319321 288 86.51 98.08 93.6 28.5 56.4 560
12321321 288 86.49 98.03 93.6 28.5 56.4 557
12321321 224 85.96 97.82 93.6 17.2 34.2 923
12323321 224 85.11 97.44 468.5 87.3 91.1 254
12324321 416 85.0 97.12 191.9 108.4 213.8 134
12325321 352 84.96 97.22 102.1 50.2 101.2 291
12325321 320 84.73 97.18 102.1 41.5 83.7 353
12327321 384 84.71 96.99 164.0 77.6 154.7 183
12328321 288 84.57 97.08 93.6 28.5 56.4 557
12329321 320 84.45 97.08 93.2 31.5 67.8 446
12330321 352 84.43 96.97 129.9 51.1 105.5 280
12331321 288 84.36 96.92 93.6 27.6 53.0 595
12332321 320 84.35 97.04 66.8 24.1 47.7 610
12327321 288 84.3 96.94 164.0 43.7 87.1 333
12334321 224 84.28 97.17 88.8 16.5 31.2 1100
12324321 320 84.24 96.86 191.9 64.2 126.6 228
12336321 288 84.19 96.87 93.6 27.2 51.6 613
12337321 224 84.18 97.19 194.0 36.3 51.2 581
12338321 288 84.11 97.11 44.6 15.1 29.0 1144
12339321 320 83.97 96.82 64.7 31.2 67.3 518
12329321 256 83.87 96.75 93.2 20.2 43.4 692
12328321 224 83.86 96.65 93.6 17.2 34.2 923
12342321 320 83.72 96.61 86.6 24.3 48.1 617
12332321 256 83.69 96.78 66.8 15.4 30.6 943
12331321 224 83.68 96.61 93.6 16.7 32.0 986
12345321 320 83.67 96.74 60.2 24.1 47.7 706
12330321 256 83.59 96.61 129.9 27.1 55.8 526
12336321 224 83.58 96.4 93.6 16.5 31.2 1013
12338321 224 83.54 96.83 44.6 9.1 17.6 1864
12349321 288 83.46 96.54 60.2 19.1 37.3 904
12350321 224 83.35 96.85 194.0 36.3 51.2 582
12339321 256 83.23 96.53 64.7 20.0 43.1 809
12352321 224 83.22 96.75 44.2 8.0 21.2 1814
12353321 288 83.16 96.38 83.5 25.7 51.6 590
12345321 256 83.14 96.38 60.2 15.4 30.5 1096
12355321 320 83.02 96.45 44.6 16.5 34.8 992
12356321 288 82.98 96.54 44.6 13.4 28.2 1077
12357321 224 82.98 96.25 83.5 15.5 31.2 989
12342321 256 82.86 96.28 86.6 15.6 30.8 951
12359321 224 82.83 96.22 88.8 16.5 31.2 1099
12349321 224 82.8 96.13 60.2 11.6 22.6 1486
12361321 288 82.8 96.32 44.6 13.0 26.8 1291
12362321 288 82.74 95.71 60.2 19.1 37.3 905
12363321 224 82.69 96.63 88.8 16.5 31.2 1100
12364321 288 82.62 95.75 60.2 19.1 37.3 904
12365321 288 82.61 96.49 25.6 8.9 20.6 1729
12366321 288 82.53 96.13 36.8 9.9 21.5 1773
12367321 224 82.5 96.02 126.9 22.8 21.2 1078
12353321 224 82.46 95.92 83.5 15.5 31.2 987
12369321 288 82.36 96.18 35.7 8.1 20.9 1964
12370321 320 82.35 96.14 25.6 8.8 24.1 1386
12371321 288 82.31 95.63 44.6 13.0 26.8 1291
12372321 288 82.29 96.01 63.6 13.6 28.5 1078
12373321 224 82.29 96.0 60.2 11.6 22.6 1484
12374321 288 82.27 96.06 68.9 18.9 23.8 1176
12355321 256 82.26 96.07 44.6 10.6 22.2 1542
12376321 288 82.24 95.73 44.6 13.0 26.8 1290
12377321 288 82.2 96.14 27.6 7.0 23.8 1547
12356321 224 82.18 96.05 44.6 8.1 17.1 1771
12379321 224 82.17 96.22 25.0 4.3 14.4 2943
12380321 288 82.12 95.65 25.6 7.1 19.6 1704
12381321 288 82.03 95.94 25.0 7.0 23.8 1745
12382321 288 82.0 96.15 24.9 5.8 12.7 1787
12366321 256 81.99 95.85 36.8 7.8 17.0 2230
12359321 176 81.98 95.72 88.8 10.3 19.4 1768
12362321 224 81.97 95.24 60.2 11.6 22.6 1486
12361321 224 81.93 95.75 44.6 7.8 16.2 2122
12387321 224 81.9 95.77 44.6 7.8 16.2 2118
12388321 224 81.84 96.1 194.0 36.3 51.2 583
12369321 256 81.78 95.94 35.7 6.4 16.6 2471
12364321 224 81.77 95.22 60.2 11.6 22.6 1485
12365321 224 81.74 96.06 25.6 5.4 12.4 2813
12392321 288 81.65 95.54 25.6 7.1 19.6 1703
12393321 288 81.64 95.88 25.6 7.2 19.7 1694
12394321 224 81.62 96.04 88.8 16.5 31.2 1101
12395321 224 81.61 95.76 68.9 11.4 14.4 1930
12396321 288 81.61 95.83 25.6 8.5 19.2 1868
12371321 224 81.5 95.16 44.6 7.8 16.2 2125
12398321 288 81.48 95.16 25.0 7.0 23.8 1745
12399321 288 81.47 95.71 25.9 6.9 18.6 2071
12374321 224 81.45 95.53 68.9 11.4 14.4 1929
123101321 288 81.44 95.22 25.6 7.2 19.7 1908
12370321 256 81.44 95.67 25.6 5.6 15.4 2168
123103321 288 81.4 95.82 30.2 6.8 13.9 2132
123104321 288 81.37 95.74 25.6 7.2 19.7 1910
12376321 224 81.32 95.19 44.6 7.8 16.2 2125
123106321 288 81.3 95.65 28.1 6.8 18.4 1803
123107321 288 81.3 95.11 25.0 7.0 23.8 1746
12377321 224 81.27 95.62 27.6 4.3 14.4 2591
12380321 224 81.26 95.16 25.6 4.3 11.8 2823
123110321 288 81.23 95.54 15.7 4.8 19.6 2117
123111321 224 81.23 95.35 115.1 20.8 38.7 545
123112321 288 81.22 95.11 25.6 6.8 18.4 2089
123113321 288 81.22 95.63 25.6 6.8 18.4 676
123114321 288 81.18 95.09 25.6 7.2 19.7 1908
123115321 224 81.18 95.98 25.6 4.1 11.1 3455
123116321 224 81.17 95.34 25.0 4.3 14.4 2933
12381321 224 81.1 95.33 25.0 4.3 14.4 2934
123118321 288 81.1 95.23 28.1 6.8 18.4 1801
123119321 288 81.1 95.12 28.1 6.8 18.4 1799
123120321 224 81.02 95.41 60.3 12.9 25.0 1347
123121321 288 80.97 95.44 25.6 6.8 18.4 2085
12399321 256 80.94 95.45 25.9 5.4 14.7 2571
123123321 224 80.93 95.73 44.2 8.0 21.2 1814
123124321 288 80.91 95.55 25.6 6.8 18.4 2084
123125321 224 80.9 95.31 49.0 8.0 21.3 1585
123126321 224 80.9 95.3 88.2 15.5 31.2 918
123127321 288 80.86 95.52 25.6 6.8 18.4 2085
123128321 224 80.85 95.43 25.6 4.1 11.1 3450
12392321 224 80.84 95.02 25.6 4.3 11.8 2821
12382321 224 80.79 95.62 24.9 3.5 7.7 2961
123131321 288 80.79 95.36 19.8 6.0 14.8 2506
123132321 288 80.79 95.58 19.9 4.2 10.6 2349
123133321 288 80.78 94.99 25.6 6.8 18.4 2088
123134321 288 80.71 95.43 25.6 6.8 18.4 2087
123135321 288 80.7 95.39 25.0 7.0 23.8 1749
12372321 192 80.69 95.24 63.6 6.0 12.7 2270
123101321 224 80.68 94.71 25.6 4.4 11.9 3162
123138321 288 80.68 95.36 19.7 6.0 14.8 2637
123139321 224 80.67 95.3 25.6 4.1 11.1 3452
123140321 288 80.67 95.42 25.0 7.4 25.1 1626
12396321 224 80.63 95.21 25.6 5.2 11.6 3034
12393321 224 80.61 95.32 25.6 4.4 11.9 2813
123143321 224 80.61 94.99 83.5 15.5 31.2 989
123144321 288 80.6 95.31 19.9 6.0 14.8 2578
123110321 256 80.57 95.17 15.7 3.8 15.5 2710
123146321 224 80.56 95.0 60.2 11.6 22.6 1483
123104321 224 80.53 95.16 25.6 4.4 11.9 3164
12398321 224 80.53 94.46 25.0 4.3 14.4 2930
12367321 176 80.48 94.98 126.9 14.3 13.2 1719
123150321 224 80.47 95.2 60.2 11.8 23.4 1428
123151321 288 80.45 95.32 25.6 6.8 18.4 2086
123103321 224 80.45 95.24 30.2 4.1 8.4 3530
123107321 224 80.45 94.63 25.0 4.3 14.4 2936
12395321 176 80.43 95.09 68.9 7.3 9.0 3015
123155321 224 80.42 95.01 44.6 8.1 17.0 2007
123112321 224 80.38 94.6 25.6 4.1 11.1 3461
123131321 256 80.36 95.1 19.8 4.8 11.7 3267
123158321 224 80.34 94.93 44.2 8.0 21.2 1814
123159321 224 80.32 95.4 25.0 4.3 14.4 2941
123160321 224 80.28 95.16 44.7 9.2 18.6 1851
123106321 224 80.26 95.08 28.1 4.1 11.1 2972
123162321 288 80.24 95.24 25.6 8.5 19.9 1523
123114321 224 80.22 94.63 25.6 4.4 11.9 3162
12373321 176 80.2 94.64 60.2 7.2 14.0 2346
123118321 224 80.08 94.74 28.1 4.1 11.1 2969
123138321 256 80.08 94.97 19.7 4.8 11.7 3284
123144321 256 80.06 94.99 19.9 4.8 11.7 3216
123113321 224 80.06 94.95 25.6 4.1 11.1 1109
123119321 224 80.02 94.71 28.1 4.1 11.1 2962
123170321 288 79.97 95.05 25.6 6.8 18.4 2086
123171321 224 79.92 94.84 60.2 11.8 23.4 1455
123172321 224 79.91 94.82 27.6 4.3 14.4 2591
123121321 224 79.91 94.67 25.6 4.1 11.1 3456
12387321 176 79.9 94.6 44.6 4.9 10.1 3341
123175321 224 79.89 94.97 35.7 4.5 12.1 2774
123127321 224 79.88 94.87 25.6 4.1 11.1 3455
123177321 320 79.86 95.07 16.0 5.2 16.4 2168
123133321 224 79.85 94.56 25.6 4.1 11.1 3460
123179321 288 79.83 94.97 25.6 6.8 18.4 2087
123180321 224 79.82 94.62 44.6 7.8 16.2 2114
123135321 224 79.76 94.6 25.0 4.3 14.4 2943
123124321 224 79.74 94.95 25.6 4.1 11.1 3455
123132321 224 79.74 94.87 19.9 2.5 6.4 3929
123184321 288 79.71 94.83 19.7 6.0 14.8 2710
123185321 224 79.68 94.74 60.2 11.6 22.6 1486
123140321 224 79.67 94.87 25.0 4.5 15.2 2729
123187321 288 79.63 94.91 25.6 6.8 18.4 2086
123188321 224 79.56 94.72 25.6 4.3 11.8 2805
123189321 224 79.53 94.58 44.6 8.1 17.0 2062
123134321 224 79.52 94.61 25.6 4.1 11.1 3459
123128321 176 79.42 94.64 25.6 2.6 6.9 5397
123192321 288 79.4 94.66 18.0 5.9 14.6 2752
123151321 224 79.38 94.57 25.6 4.1 11.1 3459
123116321 176 79.37 94.3 25.0 2.7 9.0 4577
123195321 224 79.36 94.43 25.0 4.3 14.4 2942
123196321 224 79.31 94.52 88.8 16.5 31.2 1100
123197321 224 79.31 94.53 44.6 7.8 16.2 2125
123162321 224 79.31 94.63 25.6 5.2 12.0 2524
123139321 176 79.27 94.49 25.6 2.6 6.9 5404
123200321 224 79.25 94.31 25.0 4.3 14.4 2931
123201321 224 79.22 94.84 25.6 4.1 11.1 3451
123184321 256 79.21 94.56 19.7 4.8 11.7 3392
123203321 224 79.07 94.48 25.6 4.4 11.9 3162
123170321 224 79.03 94.38 25.6 4.1 11.1 3453
123205321 224 79.01 94.39 25.6 4.1 11.1 3461
123192321 256 79.01 94.37 18.0 4.6 11.6 3440
123177321 256 78.9 94.54 16.0 3.4 10.5 3421
123146321 160 78.89 94.11 60.2 5.9 11.5 2745
123209321 224 78.84 94.28 126.9 22.8 21.2 1079
123210321 288 78.83 94.24 16.8 4.5 16.8 2251
123179321 224 78.81 94.32 25.6 4.1 11.1 3454
123212321 288 78.74 94.33 16.8 4.5 16.7 2264
123213321 224 78.72 94.23 25.7 5.5 13.5 2796
123214321 224 78.71 94.24 25.6 4.4 11.9 3154
123215321 224 78.47 94.09 68.9 11.4 14.4 1934
123187321 224 78.46 94.27 25.6 4.1 11.1 3454
123217321 288 78.43 94.35 21.8 6.5 7.5 3291
123218321 288 78.42 94.04 10.5 3.1 13.3 3226
123219321 320 78.33 94.13 16.0 5.2 16.4 2391
123220321 224 78.32 94.04 60.2 11.6 22.6 1487
123221321 288 78.28 94.1 10.4 3.1 13.3 3062
123222321 256 78.25 94.1 10.7 2.5 12.5 3393
123223321 224 78.06 93.78 25.6 4.1 11.1 3450
123224321 224 78.0 93.99 25.6 4.4 11.9 3286
123225321 288 78.0 93.91 10.3 3.1 13.3 3297
123212321 224 77.98 93.75 16.8 2.7 10.1 3841
123227321 288 77.92 93.77 21.8 6.1 6.2 3609
123180321 160 77.88 93.71 44.6 4.0 8.3 3926
123219321 256 77.87 93.84 16.0 3.4 10.5 3772
123221321 256 77.86 93.79 10.4 2.4 10.5 4263
123175321 160 77.82 93.81 35.7 2.3 6.2 5238
123218321 256 77.81 93.82 10.5 2.4 10.5 4183
123188321 160 77.79 93.6 25.6 2.2 6.0 5329
123200321 160 77.73 93.32 25.0 2.2 7.4 5576
123235321 224 77.61 93.7 25.0 4.3 14.4 2944
123210321 224 77.59 93.61 16.8 2.7 10.2 3807
123237321 224 77.58 93.72 25.6 4.1 11.1 3455
123225321 256 77.44 93.56 10.3 2.4 10.5 4284
123239321 288 77.41 93.63 16.0 4.3 13.5 2907
123240321 224 77.38 93.54 44.6 7.8 16.2 2125
123214321 160 77.22 93.27 25.6 2.2 6.1 5982
123242321 288 77.17 93.47 10.3 3.1 13.3 3392
123243321 288 77.15 93.27 21.8 6.1 6.2 3615
123217321 224 77.1 93.37 21.8 3.9 4.5 5436
123245321 224 77.02 93.07 28.1 4.1 11.1 2952
123242321 256 76.78 93.13 10.3 2.4 10.5 4410
123239321 224 76.7 93.17 16.0 2.6 8.2 4859
123248321 288 76.5 93.35 21.8 6.1 6.2 3617
123227321 224 76.42 92.87 21.8 3.7 3.7 5984
123250321 288 76.35 93.18 16.0 3.9 12.2 3331
123251321 224 76.13 92.86 25.6 4.1 11.1 3457
123223321 160 75.96 92.5 25.6 2.1 5.7 6490
123243321 224 75.52 92.44 21.8 3.7 3.7 5991
123250321 224 75.3 92.58 16.0 2.4 7.4 5583
123248321 224 75.16 92.18 21.8 3.7 3.7 5994
123245321 160 75.1 92.08 28.1 2.1 5.7 5513
123257321 224 74.57 91.98 21.8 3.7 3.7 5984
123258321 288 73.81 91.83 11.7 3.4 5.4 5196
123259321 224 73.32 91.42 21.8 3.7 3.7 5979
123260321 224 73.28 91.73 11.7 1.8 2.5 10213
123261321 288 73.16 91.03 11.7 3.0 4.1 6050
123262321 224 72.98 91.11 21.8 3.7 3.7 5967
123263321 224 72.6 91.42 11.7 1.8 2.5 10213
123264321 288 72.37 90.59 11.7 3.0 4.1 6051
123265321 224 72.26 90.31 10.1 1.7 5.8 7026
123258321 224 72.26 90.68 11.7 2.1 3.3 8707
123261321 224 71.49 90.07 11.7 1.8 2.5 10187
123265321 176 71.31 89.69 10.1 1.1 3.6 10970
123269321 224 70.84 89.76 11.7 1.8 2.5 10210
123264321 224 70.64 89.47 11.7 1.8 2.5 10194
123262321 160 70.56 89.52 21.8 1.9 1.9 10737
123272321 224 69.76 89.07 11.7 1.8 2.5 10205
123273321 224 68.34 88.03 5.4 1.1 2.4 13079
123274321 224 68.25 88.17 11.7 1.8 2.5 10167
123273321 176 66.71 86.96 5.4 0.7 1.5 20327
123274321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Xie2016,
  title={Aggregated Residual Transformations for Deep Neural Networks},
  author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@inproceedings{zhang2019shiftinvar,
  title={Making Convolutional Networks Shift-Invariant Again},
  author={Zhang, Richard},
  booktitle={ICML},
  year={2019}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@inproceedings{hu2018senet,
  title={Squeeze-and-Excitation Networks},
  author={Jie Hu and Li Shen and Gang Sun},
  journal={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}
@article{He2018BagOT,
  title={Bag of Tricks for Image Classification with Convolutional Neural Networks},
  author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li},
  journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018},
  pages={558-567}
}