英文

seresnext26d_32x4d.bt_in1k 模型的模型卡片

一个具有Squeeze-and-Excitation通道注意力的SE-ResNeXt-D图像分类模型。

这个模型具有以下特点:

  • ReLU激活函数
  • 3层3x3卷积核的主干架构,带有池化层
  • 2x2平均池化 + 1x1卷积的快捷方式下采样
  • 组合的3x3瓶颈卷积
  • Squeeze-and-Excitation通道注意力

使用下面描述的timm模板在ImageNet-1k上进行训练。

配方详情:

  • Bag-of-Tricks配方。
  • 使用SGD(带Nesterov动量)优化器
  • 带有warmup的余弦学习率调度

模型详情

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('seresnext26d_32x4d.bt_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnext26d_32x4d.bt_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnext26d_32x4d.bt_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索该模型的数据集和运行时指标 model results

model img_size top1 top5 param_count gmacs macts img/sec
12314321 320 86.72 98.17 93.6 35.2 69.7 451
12314321 288 86.51 98.08 93.6 28.5 56.4 560
12316321 288 86.49 98.03 93.6 28.5 56.4 557
12316321 224 85.96 97.82 93.6 17.2 34.2 923
12318321 224 85.11 97.44 468.5 87.3 91.1 254
12319321 416 85.0 97.12 191.9 108.4 213.8 134
12320321 352 84.96 97.22 102.1 50.2 101.2 291
12320321 320 84.73 97.18 102.1 41.5 83.7 353
12322321 384 84.71 96.99 164.0 77.6 154.7 183
12323321 288 84.57 97.08 93.6 28.5 56.4 557
12324321 320 84.45 97.08 93.2 31.5 67.8 446
12325321 352 84.43 96.97 129.9 51.1 105.5 280
12326321 288 84.36 96.92 93.6 27.6 53.0 595
12327321 320 84.35 97.04 66.8 24.1 47.7 610
12322321 288 84.3 96.94 164.0 43.7 87.1 333
12329321 224 84.28 97.17 88.8 16.5 31.2 1100
12319321 320 84.24 96.86 191.9 64.2 126.6 228
12331321 288 84.19 96.87 93.6 27.2 51.6 613
12332321 224 84.18 97.19 194.0 36.3 51.2 581
12333321 288 84.11 97.11 44.6 15.1 29.0 1144
12334321 320 83.97 96.82 64.7 31.2 67.3 518
12324321 256 83.87 96.75 93.2 20.2 43.4 692
12323321 224 83.86 96.65 93.6 17.2 34.2 923
12337321 320 83.72 96.61 86.6 24.3 48.1 617
12327321 256 83.69 96.78 66.8 15.4 30.6 943
12326321 224 83.68 96.61 93.6 16.7 32.0 986
12340321 320 83.67 96.74 60.2 24.1 47.7 706
12325321 256 83.59 96.61 129.9 27.1 55.8 526
12331321 224 83.58 96.4 93.6 16.5 31.2 1013
12333321 224 83.54 96.83 44.6 9.1 17.6 1864
12344321 288 83.46 96.54 60.2 19.1 37.3 904
12345321 224 83.35 96.85 194.0 36.3 51.2 582
12334321 256 83.23 96.53 64.7 20.0 43.1 809
12347321 224 83.22 96.75 44.2 8.0 21.2 1814
12348321 288 83.16 96.38 83.5 25.7 51.6 590
12340321 256 83.14 96.38 60.2 15.4 30.5 1096
12350321 320 83.02 96.45 44.6 16.5 34.8 992
12351321 288 82.98 96.54 44.6 13.4 28.2 1077
12352321 224 82.98 96.25 83.5 15.5 31.2 989
12337321 256 82.86 96.28 86.6 15.6 30.8 951
12354321 224 82.83 96.22 88.8 16.5 31.2 1099
12344321 224 82.8 96.13 60.2 11.6 22.6 1486
12356321 288 82.8 96.32 44.6 13.0 26.8 1291
12357321 288 82.74 95.71 60.2 19.1 37.3 905
12358321 224 82.69 96.63 88.8 16.5 31.2 1100
12359321 288 82.62 95.75 60.2 19.1 37.3 904
12360321 288 82.61 96.49 25.6 8.9 20.6 1729
12361321 288 82.53 96.13 36.8 9.9 21.5 1773
12362321 224 82.5 96.02 126.9 22.8 21.2 1078
12348321 224 82.46 95.92 83.5 15.5 31.2 987
12364321 288 82.36 96.18 35.7 8.1 20.9 1964
12365321 320 82.35 96.14 25.6 8.8 24.1 1386
12366321 288 82.31 95.63 44.6 13.0 26.8 1291
12367321 288 82.29 96.01 63.6 13.6 28.5 1078
12368321 224 82.29 96.0 60.2 11.6 22.6 1484
12369321 288 82.27 96.06 68.9 18.9 23.8 1176
12350321 256 82.26 96.07 44.6 10.6 22.2 1542
12371321 288 82.24 95.73 44.6 13.0 26.8 1290
12372321 288 82.2 96.14 27.6 7.0 23.8 1547
12351321 224 82.18 96.05 44.6 8.1 17.1 1771
12374321 224 82.17 96.22 25.0 4.3 14.4 2943
12375321 288 82.12 95.65 25.6 7.1 19.6 1704
12376321 288 82.03 95.94 25.0 7.0 23.8 1745
12377321 288 82.0 96.15 24.9 5.8 12.7 1787
12361321 256 81.99 95.85 36.8 7.8 17.0 2230
12354321 176 81.98 95.72 88.8 10.3 19.4 1768
12357321 224 81.97 95.24 60.2 11.6 22.6 1486
12356321 224 81.93 95.75 44.6 7.8 16.2 2122
12382321 224 81.9 95.77 44.6 7.8 16.2 2118
12383321 224 81.84 96.1 194.0 36.3 51.2 583
12364321 256 81.78 95.94 35.7 6.4 16.6 2471
12359321 224 81.77 95.22 60.2 11.6 22.6 1485
12360321 224 81.74 96.06 25.6 5.4 12.4 2813
12387321 288 81.65 95.54 25.6 7.1 19.6 1703
12388321 288 81.64 95.88 25.6 7.2 19.7 1694
12389321 224 81.62 96.04 88.8 16.5 31.2 1101
12390321 224 81.61 95.76 68.9 11.4 14.4 1930
12391321 288 81.61 95.83 25.6 8.5 19.2 1868
12366321 224 81.5 95.16 44.6 7.8 16.2 2125
12393321 288 81.48 95.16 25.0 7.0 23.8 1745
12394321 288 81.47 95.71 25.9 6.9 18.6 2071
12369321 224 81.45 95.53 68.9 11.4 14.4 1929
12396321 288 81.44 95.22 25.6 7.2 19.7 1908
12365321 256 81.44 95.67 25.6 5.6 15.4 2168
12398321 288 81.4 95.82 30.2 6.8 13.9 2132
12399321 288 81.37 95.74 25.6 7.2 19.7 1910
12371321 224 81.32 95.19 44.6 7.8 16.2 2125
123101321 288 81.3 95.65 28.1 6.8 18.4 1803
123102321 288 81.3 95.11 25.0 7.0 23.8 1746
12372321 224 81.27 95.62 27.6 4.3 14.4 2591
12375321 224 81.26 95.16 25.6 4.3 11.8 2823
123105321 288 81.23 95.54 15.7 4.8 19.6 2117
123106321 224 81.23 95.35 115.1 20.8 38.7 545
123107321 288 81.22 95.11 25.6 6.8 18.4 2089
123108321 288 81.22 95.63 25.6 6.8 18.4 676
123109321 288 81.18 95.09 25.6 7.2 19.7 1908
123110321 224 81.18 95.98 25.6 4.1 11.1 3455
123111321 224 81.17 95.34 25.0 4.3 14.4 2933
12376321 224 81.1 95.33 25.0 4.3 14.4 2934
123113321 288 81.1 95.23 28.1 6.8 18.4 1801
123114321 288 81.1 95.12 28.1 6.8 18.4 1799
123115321 224 81.02 95.41 60.3 12.9 25.0 1347
123116321 288 80.97 95.44 25.6 6.8 18.4 2085
12394321 256 80.94 95.45 25.9 5.4 14.7 2571
123118321 224 80.93 95.73 44.2 8.0 21.2 1814
123119321 288 80.91 95.55 25.6 6.8 18.4 2084
123120321 224 80.9 95.31 49.0 8.0 21.3 1585
123121321 224 80.9 95.3 88.2 15.5 31.2 918
123122321 288 80.86 95.52 25.6 6.8 18.4 2085
123123321 224 80.85 95.43 25.6 4.1 11.1 3450
12387321 224 80.84 95.02 25.6 4.3 11.8 2821
12377321 224 80.79 95.62 24.9 3.5 7.7 2961
123126321 288 80.79 95.36 19.8 6.0 14.8 2506
123127321 288 80.79 95.58 19.9 4.2 10.6 2349
123128321 288 80.78 94.99 25.6 6.8 18.4 2088
123129321 288 80.71 95.43 25.6 6.8 18.4 2087
123130321 288 80.7 95.39 25.0 7.0 23.8 1749
12367321 192 80.69 95.24 63.6 6.0 12.7 2270
12396321 224 80.68 94.71 25.6 4.4 11.9 3162
123133321 288 80.68 95.36 19.7 6.0 14.8 2637
123134321 224 80.67 95.3 25.6 4.1 11.1 3452
123135321 288 80.67 95.42 25.0 7.4 25.1 1626
12391321 224 80.63 95.21 25.6 5.2 11.6 3034
12388321 224 80.61 95.32 25.6 4.4 11.9 2813
123138321 224 80.61 94.99 83.5 15.5 31.2 989
123139321 288 80.6 95.31 19.9 6.0 14.8 2578
123105321 256 80.57 95.17 15.7 3.8 15.5 2710
123141321 224 80.56 95.0 60.2 11.6 22.6 1483
12399321 224 80.53 95.16 25.6 4.4 11.9 3164
12393321 224 80.53 94.46 25.0 4.3 14.4 2930
12362321 176 80.48 94.98 126.9 14.3 13.2 1719
123145321 224 80.47 95.2 60.2 11.8 23.4 1428
123146321 288 80.45 95.32 25.6 6.8 18.4 2086
12398321 224 80.45 95.24 30.2 4.1 8.4 3530
123102321 224 80.45 94.63 25.0 4.3 14.4 2936
12390321 176 80.43 95.09 68.9 7.3 9.0 3015
123150321 224 80.42 95.01 44.6 8.1 17.0 2007
123107321 224 80.38 94.6 25.6 4.1 11.1 3461
123126321 256 80.36 95.1 19.8 4.8 11.7 3267
123153321 224 80.34 94.93 44.2 8.0 21.2 1814
123154321 224 80.32 95.4 25.0 4.3 14.4 2941
123155321 224 80.28 95.16 44.7 9.2 18.6 1851
123101321 224 80.26 95.08 28.1 4.1 11.1 2972
123157321 288 80.24 95.24 25.6 8.5 19.9 1523
123109321 224 80.22 94.63 25.6 4.4 11.9 3162
12368321 176 80.2 94.64 60.2 7.2 14.0 2346
123113321 224 80.08 94.74 28.1 4.1 11.1 2969
123133321 256 80.08 94.97 19.7 4.8 11.7 3284
123139321 256 80.06 94.99 19.9 4.8 11.7 3216
123108321 224 80.06 94.95 25.6 4.1 11.1 1109
123114321 224 80.02 94.71 28.1 4.1 11.1 2962
123165321 288 79.97 95.05 25.6 6.8 18.4 2086
123166321 224 79.92 94.84 60.2 11.8 23.4 1455
123167321 224 79.91 94.82 27.6 4.3 14.4 2591
123116321 224 79.91 94.67 25.6 4.1 11.1 3456
12382321 176 79.9 94.6 44.6 4.9 10.1 3341
123170321 224 79.89 94.97 35.7 4.5 12.1 2774
123122321 224 79.88 94.87 25.6 4.1 11.1 3455
123172321 320 79.86 95.07 16.0 5.2 16.4 2168
123128321 224 79.85 94.56 25.6 4.1 11.1 3460
123174321 288 79.83 94.97 25.6 6.8 18.4 2087
123175321 224 79.82 94.62 44.6 7.8 16.2 2114
123130321 224 79.76 94.6 25.0 4.3 14.4 2943
123119321 224 79.74 94.95 25.6 4.1 11.1 3455
123127321 224 79.74 94.87 19.9 2.5 6.4 3929
123179321 288 79.71 94.83 19.7 6.0 14.8 2710
123180321 224 79.68 94.74 60.2 11.6 22.6 1486
123135321 224 79.67 94.87 25.0 4.5 15.2 2729
123182321 288 79.63 94.91 25.6 6.8 18.4 2086
123183321 224 79.56 94.72 25.6 4.3 11.8 2805
123184321 224 79.53 94.58 44.6 8.1 17.0 2062
123129321 224 79.52 94.61 25.6 4.1 11.1 3459
123123321 176 79.42 94.64 25.6 2.6 6.9 5397
123187321 288 79.4 94.66 18.0 5.9 14.6 2752
123146321 224 79.38 94.57 25.6 4.1 11.1 3459
123111321 176 79.37 94.3 25.0 2.7 9.0 4577
123190321 224 79.36 94.43 25.0 4.3 14.4 2942
123191321 224 79.31 94.52 88.8 16.5 31.2 1100
123192321 224 79.31 94.53 44.6 7.8 16.2 2125
123157321 224 79.31 94.63 25.6 5.2 12.0 2524
123134321 176 79.27 94.49 25.6 2.6 6.9 5404
123195321 224 79.25 94.31 25.0 4.3 14.4 2931
123196321 224 79.22 94.84 25.6 4.1 11.1 3451
123179321 256 79.21 94.56 19.7 4.8 11.7 3392
123198321 224 79.07 94.48 25.6 4.4 11.9 3162
123165321 224 79.03 94.38 25.6 4.1 11.1 3453
123200321 224 79.01 94.39 25.6 4.1 11.1 3461
123187321 256 79.01 94.37 18.0 4.6 11.6 3440
123172321 256 78.9 94.54 16.0 3.4 10.5 3421
123141321 160 78.89 94.11 60.2 5.9 11.5 2745
123204321 224 78.84 94.28 126.9 22.8 21.2 1079
123205321 288 78.83 94.24 16.8 4.5 16.8 2251
123174321 224 78.81 94.32 25.6 4.1 11.1 3454
123207321 288 78.74 94.33 16.8 4.5 16.7 2264
123208321 224 78.72 94.23 25.7 5.5 13.5 2796
123209321 224 78.71 94.24 25.6 4.4 11.9 3154
123210321 224 78.47 94.09 68.9 11.4 14.4 1934
123182321 224 78.46 94.27 25.6 4.1 11.1 3454
123212321 288 78.43 94.35 21.8 6.5 7.5 3291
123213321 288 78.42 94.04 10.5 3.1 13.3 3226
123214321 320 78.33 94.13 16.0 5.2 16.4 2391
123215321 224 78.32 94.04 60.2 11.6 22.6 1487
123216321 288 78.28 94.1 10.4 3.1 13.3 3062
123217321 256 78.25 94.1 10.7 2.5 12.5 3393
123218321 224 78.06 93.78 25.6 4.1 11.1 3450
123219321 224 78.0 93.99 25.6 4.4 11.9 3286
123220321 288 78.0 93.91 10.3 3.1 13.3 3297
123207321 224 77.98 93.75 16.8 2.7 10.1 3841
123222321 288 77.92 93.77 21.8 6.1 6.2 3609
123175321 160 77.88 93.71 44.6 4.0 8.3 3926
123214321 256 77.87 93.84 16.0 3.4 10.5 3772
123216321 256 77.86 93.79 10.4 2.4 10.5 4263
123170321 160 77.82 93.81 35.7 2.3 6.2 5238
123213321 256 77.81 93.82 10.5 2.4 10.5 4183
123183321 160 77.79 93.6 25.6 2.2 6.0 5329
123195321 160 77.73 93.32 25.0 2.2 7.4 5576
123230321 224 77.61 93.7 25.0 4.3 14.4 2944
123205321 224 77.59 93.61 16.8 2.7 10.2 3807
123232321 224 77.58 93.72 25.6 4.1 11.1 3455
123220321 256 77.44 93.56 10.3 2.4 10.5 4284
123234321 288 77.41 93.63 16.0 4.3 13.5 2907
123235321 224 77.38 93.54 44.6 7.8 16.2 2125
123209321 160 77.22 93.27 25.6 2.2 6.1 5982
123237321 288 77.17 93.47 10.3 3.1 13.3 3392
123238321 288 77.15 93.27 21.8 6.1 6.2 3615
123212321 224 77.1 93.37 21.8 3.9 4.5 5436
123240321 224 77.02 93.07 28.1 4.1 11.1 2952
123237321 256 76.78 93.13 10.3 2.4 10.5 4410
123234321 224 76.7 93.17 16.0 2.6 8.2 4859
123243321 288 76.5 93.35 21.8 6.1 6.2 3617
123222321 224 76.42 92.87 21.8 3.7 3.7 5984
123245321 288 76.35 93.18 16.0 3.9 12.2 3331
123246321 224 76.13 92.86 25.6 4.1 11.1 3457
123218321 160 75.96 92.5 25.6 2.1 5.7 6490
123238321 224 75.52 92.44 21.8 3.7 3.7 5991
123245321 224 75.3 92.58 16.0 2.4 7.4 5583
123243321 224 75.16 92.18 21.8 3.7 3.7 5994
123240321 160 75.1 92.08 28.1 2.1 5.7 5513
123252321 224 74.57 91.98 21.8 3.7 3.7 5984
123253321 288 73.81 91.83 11.7 3.4 5.4 5196
123254321 224 73.32 91.42 21.8 3.7 3.7 5979
123255321 224 73.28 91.73 11.7 1.8 2.5 10213
123256321 288 73.16 91.03 11.7 3.0 4.1 6050
123257321 224 72.98 91.11 21.8 3.7 3.7 5967
123258321 224 72.6 91.42 11.7 1.8 2.5 10213
123259321 288 72.37 90.59 11.7 3.0 4.1 6051
123260321 224 72.26 90.31 10.1 1.7 5.8 7026
123253321 224 72.26 90.68 11.7 2.1 3.3 8707
123256321 224 71.49 90.07 11.7 1.8 2.5 10187
123260321 176 71.31 89.69 10.1 1.1 3.6 10970
123264321 224 70.84 89.76 11.7 1.8 2.5 10210
123259321 224 70.64 89.47 11.7 1.8 2.5 10194
123257321 160 70.56 89.52 21.8 1.9 1.9 10737
123267321 224 69.76 89.07 11.7 1.8 2.5 10205
123268321 224 68.34 88.03 5.4 1.1 2.4 13079
123269321 224 68.25 88.17 11.7 1.8 2.5 10167
123268321 176 66.71 86.96 5.4 0.7 1.5 20327
123269321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Xie2016,
  title={Aggregated Residual Transformations for Deep Neural Networks},
  author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@inproceedings{hu2018senet,
  title={Squeeze-and-Excitation Networks},
  author={Jie Hu and Li Shen and Gang Sun},
  journal={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}
@article{He2018BagOT,
  title={Bag of Tricks for Image Classification with Convolutional Neural Networks},
  author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li},
  journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018},
  pages={558-567}
}