英文

seresnext101_32x8d.ah_in1k模型卡片

一个带有Squeeze-and-Excitation通道注意力的SE-ResNeXt-B图像分类模型。

该模型具有以下特点:

  • ReLU激活函数
  • 单层7x7卷积池化
  • 1x1卷积快捷下采样
  • 分组的3x3瓶颈卷积
  • Squeeze-and-Excitation通道注意力

该模型在timm中使用下面描述的模板进行了ImageNet-1k训练。

配方详情:

  • 基于 ResNet Strikes Back A1配方
  • LAMB优化器
  • 无CutMix。比论文A1配方更强的dropout、随机深度和RandAugment
  • 余弦学习率衰减与预热

模型详情

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('seresnext101_32x8d.ah_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnext101_32x8d.ah_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'seresnext101_32x8d.ah_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索该模型的数据集和运行时指标 model results

model img_size top1 top5 param_count gmacs macts img/sec
12315321 320 86.72 98.17 93.6 35.2 69.7 451
12315321 288 86.51 98.08 93.6 28.5 56.4 560
12317321 288 86.49 98.03 93.6 28.5 56.4 557
12317321 224 85.96 97.82 93.6 17.2 34.2 923
12319321 224 85.11 97.44 468.5 87.3 91.1 254
12320321 416 85.0 97.12 191.9 108.4 213.8 134
12321321 352 84.96 97.22 102.1 50.2 101.2 291
12321321 320 84.73 97.18 102.1 41.5 83.7 353
12323321 384 84.71 96.99 164.0 77.6 154.7 183
12324321 288 84.57 97.08 93.6 28.5 56.4 557
12325321 320 84.45 97.08 93.2 31.5 67.8 446
12326321 352 84.43 96.97 129.9 51.1 105.5 280
12327321 288 84.36 96.92 93.6 27.6 53.0 595
12328321 320 84.35 97.04 66.8 24.1 47.7 610
12323321 288 84.3 96.94 164.0 43.7 87.1 333
12330321 224 84.28 97.17 88.8 16.5 31.2 1100
12320321 320 84.24 96.86 191.9 64.2 126.6 228
12332321 288 84.19 96.87 93.6 27.2 51.6 613
12333321 224 84.18 97.19 194.0 36.3 51.2 581
12334321 288 84.11 97.11 44.6 15.1 29.0 1144
12335321 320 83.97 96.82 64.7 31.2 67.3 518
12325321 256 83.87 96.75 93.2 20.2 43.4 692
12324321 224 83.86 96.65 93.6 17.2 34.2 923
12338321 320 83.72 96.61 86.6 24.3 48.1 617
12328321 256 83.69 96.78 66.8 15.4 30.6 943
12327321 224 83.68 96.61 93.6 16.7 32.0 986
12341321 320 83.67 96.74 60.2 24.1 47.7 706
12326321 256 83.59 96.61 129.9 27.1 55.8 526
12332321 224 83.58 96.4 93.6 16.5 31.2 1013
12334321 224 83.54 96.83 44.6 9.1 17.6 1864
12345321 288 83.46 96.54 60.2 19.1 37.3 904
12346321 224 83.35 96.85 194.0 36.3 51.2 582
12335321 256 83.23 96.53 64.7 20.0 43.1 809
12348321 224 83.22 96.75 44.2 8.0 21.2 1814
12349321 288 83.16 96.38 83.5 25.7 51.6 590
12341321 256 83.14 96.38 60.2 15.4 30.5 1096
12351321 320 83.02 96.45 44.6 16.5 34.8 992
12352321 288 82.98 96.54 44.6 13.4 28.2 1077
12353321 224 82.98 96.25 83.5 15.5 31.2 989
12338321 256 82.86 96.28 86.6 15.6 30.8 951
12355321 224 82.83 96.22 88.8 16.5 31.2 1099
12345321 224 82.8 96.13 60.2 11.6 22.6 1486
12357321 288 82.8 96.32 44.6 13.0 26.8 1291
12358321 288 82.74 95.71 60.2 19.1 37.3 905
12359321 224 82.69 96.63 88.8 16.5 31.2 1100
12360321 288 82.62 95.75 60.2 19.1 37.3 904
12361321 288 82.61 96.49 25.6 8.9 20.6 1729
12362321 288 82.53 96.13 36.8 9.9 21.5 1773
12363321 224 82.5 96.02 126.9 22.8 21.2 1078
12349321 224 82.46 95.92 83.5 15.5 31.2 987
12365321 288 82.36 96.18 35.7 8.1 20.9 1964
12366321 320 82.35 96.14 25.6 8.8 24.1 1386
12367321 288 82.31 95.63 44.6 13.0 26.8 1291
12368321 288 82.29 96.01 63.6 13.6 28.5 1078
12369321 224 82.29 96.0 60.2 11.6 22.6 1484
12370321 288 82.27 96.06 68.9 18.9 23.8 1176
12351321 256 82.26 96.07 44.6 10.6 22.2 1542
12372321 288 82.24 95.73 44.6 13.0 26.8 1290
12373321 288 82.2 96.14 27.6 7.0 23.8 1547
12352321 224 82.18 96.05 44.6 8.1 17.1 1771
12375321 224 82.17 96.22 25.0 4.3 14.4 2943
12376321 288 82.12 95.65 25.6 7.1 19.6 1704
12377321 288 82.03 95.94 25.0 7.0 23.8 1745
12378321 288 82.0 96.15 24.9 5.8 12.7 1787
12362321 256 81.99 95.85 36.8 7.8 17.0 2230
12355321 176 81.98 95.72 88.8 10.3 19.4 1768
12358321 224 81.97 95.24 60.2 11.6 22.6 1486
12357321 224 81.93 95.75 44.6 7.8 16.2 2122
12383321 224 81.9 95.77 44.6 7.8 16.2 2118
12384321 224 81.84 96.1 194.0 36.3 51.2 583
12365321 256 81.78 95.94 35.7 6.4 16.6 2471
12360321 224 81.77 95.22 60.2 11.6 22.6 1485
12361321 224 81.74 96.06 25.6 5.4 12.4 2813
12388321 288 81.65 95.54 25.6 7.1 19.6 1703
12389321 288 81.64 95.88 25.6 7.2 19.7 1694
12390321 224 81.62 96.04 88.8 16.5 31.2 1101
12391321 224 81.61 95.76 68.9 11.4 14.4 1930
12392321 288 81.61 95.83 25.6 8.5 19.2 1868
12367321 224 81.5 95.16 44.6 7.8 16.2 2125
12394321 288 81.48 95.16 25.0 7.0 23.8 1745
12395321 288 81.47 95.71 25.9 6.9 18.6 2071
12370321 224 81.45 95.53 68.9 11.4 14.4 1929
12397321 288 81.44 95.22 25.6 7.2 19.7 1908
12366321 256 81.44 95.67 25.6 5.6 15.4 2168
12399321 288 81.4 95.82 30.2 6.8 13.9 2132
123100321 288 81.37 95.74 25.6 7.2 19.7 1910
12372321 224 81.32 95.19 44.6 7.8 16.2 2125
123102321 288 81.3 95.65 28.1 6.8 18.4 1803
123103321 288 81.3 95.11 25.0 7.0 23.8 1746
12373321 224 81.27 95.62 27.6 4.3 14.4 2591
12376321 224 81.26 95.16 25.6 4.3 11.8 2823
123106321 288 81.23 95.54 15.7 4.8 19.6 2117
123107321 224 81.23 95.35 115.1 20.8 38.7 545
123108321 288 81.22 95.11 25.6 6.8 18.4 2089
123109321 288 81.22 95.63 25.6 6.8 18.4 676
123110321 288 81.18 95.09 25.6 7.2 19.7 1908
123111321 224 81.18 95.98 25.6 4.1 11.1 3455
123112321 224 81.17 95.34 25.0 4.3 14.4 2933
12377321 224 81.1 95.33 25.0 4.3 14.4 2934
123114321 288 81.1 95.23 28.1 6.8 18.4 1801
123115321 288 81.1 95.12 28.1 6.8 18.4 1799
123116321 224 81.02 95.41 60.3 12.9 25.0 1347
123117321 288 80.97 95.44 25.6 6.8 18.4 2085
12395321 256 80.94 95.45 25.9 5.4 14.7 2571
123119321 224 80.93 95.73 44.2 8.0 21.2 1814
123120321 288 80.91 95.55 25.6 6.8 18.4 2084
123121321 224 80.9 95.31 49.0 8.0 21.3 1585
123122321 224 80.9 95.3 88.2 15.5 31.2 918
123123321 288 80.86 95.52 25.6 6.8 18.4 2085
123124321 224 80.85 95.43 25.6 4.1 11.1 3450
12388321 224 80.84 95.02 25.6 4.3 11.8 2821
12378321 224 80.79 95.62 24.9 3.5 7.7 2961
123127321 288 80.79 95.36 19.8 6.0 14.8 2506
123128321 288 80.79 95.58 19.9 4.2 10.6 2349
123129321 288 80.78 94.99 25.6 6.8 18.4 2088
123130321 288 80.71 95.43 25.6 6.8 18.4 2087
123131321 288 80.7 95.39 25.0 7.0 23.8 1749
12368321 192 80.69 95.24 63.6 6.0 12.7 2270
12397321 224 80.68 94.71 25.6 4.4 11.9 3162
123134321 288 80.68 95.36 19.7 6.0 14.8 2637
123135321 224 80.67 95.3 25.6 4.1 11.1 3452
123136321 288 80.67 95.42 25.0 7.4 25.1 1626
12392321 224 80.63 95.21 25.6 5.2 11.6 3034
12389321 224 80.61 95.32 25.6 4.4 11.9 2813
123139321 224 80.61 94.99 83.5 15.5 31.2 989
123140321 288 80.6 95.31 19.9 6.0 14.8 2578
123106321 256 80.57 95.17 15.7 3.8 15.5 2710
123142321 224 80.56 95.0 60.2 11.6 22.6 1483
123100321 224 80.53 95.16 25.6 4.4 11.9 3164
12394321 224 80.53 94.46 25.0 4.3 14.4 2930
12363321 176 80.48 94.98 126.9 14.3 13.2 1719
123146321 224 80.47 95.2 60.2 11.8 23.4 1428
123147321 288 80.45 95.32 25.6 6.8 18.4 2086
12399321 224 80.45 95.24 30.2 4.1 8.4 3530
123103321 224 80.45 94.63 25.0 4.3 14.4 2936
12391321 176 80.43 95.09 68.9 7.3 9.0 3015
123151321 224 80.42 95.01 44.6 8.1 17.0 2007
123108321 224 80.38 94.6 25.6 4.1 11.1 3461
123127321 256 80.36 95.1 19.8 4.8 11.7 3267
123154321 224 80.34 94.93 44.2 8.0 21.2 1814
123155321 224 80.32 95.4 25.0 4.3 14.4 2941
123156321 224 80.28 95.16 44.7 9.2 18.6 1851
123102321 224 80.26 95.08 28.1 4.1 11.1 2972
123158321 288 80.24 95.24 25.6 8.5 19.9 1523
123110321 224 80.22 94.63 25.6 4.4 11.9 3162
12369321 176 80.2 94.64 60.2 7.2 14.0 2346
123114321 224 80.08 94.74 28.1 4.1 11.1 2969
123134321 256 80.08 94.97 19.7 4.8 11.7 3284
123140321 256 80.06 94.99 19.9 4.8 11.7 3216
123109321 224 80.06 94.95 25.6 4.1 11.1 1109
123115321 224 80.02 94.71 28.1 4.1 11.1 2962
123166321 288 79.97 95.05 25.6 6.8 18.4 2086
123167321 224 79.92 94.84 60.2 11.8 23.4 1455
123168321 224 79.91 94.82 27.6 4.3 14.4 2591
123117321 224 79.91 94.67 25.6 4.1 11.1 3456
12383321 176 79.9 94.6 44.6 4.9 10.1 3341
123171321 224 79.89 94.97 35.7 4.5 12.1 2774
123123321 224 79.88 94.87 25.6 4.1 11.1 3455
123173321 320 79.86 95.07 16.0 5.2 16.4 2168
123129321 224 79.85 94.56 25.6 4.1 11.1 3460
123175321 288 79.83 94.97 25.6 6.8 18.4 2087
123176321 224 79.82 94.62 44.6 7.8 16.2 2114
123131321 224 79.76 94.6 25.0 4.3 14.4 2943
123120321 224 79.74 94.95 25.6 4.1 11.1 3455
123128321 224 79.74 94.87 19.9 2.5 6.4 3929
123180321 288 79.71 94.83 19.7 6.0 14.8 2710
123181321 224 79.68 94.74 60.2 11.6 22.6 1486
123136321 224 79.67 94.87 25.0 4.5 15.2 2729
123183321 288 79.63 94.91 25.6 6.8 18.4 2086
123184321 224 79.56 94.72 25.6 4.3 11.8 2805
123185321 224 79.53 94.58 44.6 8.1 17.0 2062
123130321 224 79.52 94.61 25.6 4.1 11.1 3459
123124321 176 79.42 94.64 25.6 2.6 6.9 5397
123188321 288 79.4 94.66 18.0 5.9 14.6 2752
123147321 224 79.38 94.57 25.6 4.1 11.1 3459
123112321 176 79.37 94.3 25.0 2.7 9.0 4577
123191321 224 79.36 94.43 25.0 4.3 14.4 2942
123192321 224 79.31 94.52 88.8 16.5 31.2 1100
123193321 224 79.31 94.53 44.6 7.8 16.2 2125
123158321 224 79.31 94.63 25.6 5.2 12.0 2524
123135321 176 79.27 94.49 25.6 2.6 6.9 5404
123196321 224 79.25 94.31 25.0 4.3 14.4 2931
123197321 224 79.22 94.84 25.6 4.1 11.1 3451
123180321 256 79.21 94.56 19.7 4.8 11.7 3392
123199321 224 79.07 94.48 25.6 4.4 11.9 3162
123166321 224 79.03 94.38 25.6 4.1 11.1 3453
123201321 224 79.01 94.39 25.6 4.1 11.1 3461
123188321 256 79.01 94.37 18.0 4.6 11.6 3440
123173321 256 78.9 94.54 16.0 3.4 10.5 3421
123142321 160 78.89 94.11 60.2 5.9 11.5 2745
123205321 224 78.84 94.28 126.9 22.8 21.2 1079
123206321 288 78.83 94.24 16.8 4.5 16.8 2251
123175321 224 78.81 94.32 25.6 4.1 11.1 3454
123208321 288 78.74 94.33 16.8 4.5 16.7 2264
123209321 224 78.72 94.23 25.7 5.5 13.5 2796
123210321 224 78.71 94.24 25.6 4.4 11.9 3154
123211321 224 78.47 94.09 68.9 11.4 14.4 1934
123183321 224 78.46 94.27 25.6 4.1 11.1 3454
123213321 288 78.43 94.35 21.8 6.5 7.5 3291
123214321 288 78.42 94.04 10.5 3.1 13.3 3226
123215321 320 78.33 94.13 16.0 5.2 16.4 2391
123216321 224 78.32 94.04 60.2 11.6 22.6 1487
123217321 288 78.28 94.1 10.4 3.1 13.3 3062
123218321 256 78.25 94.1 10.7 2.5 12.5 3393
123219321 224 78.06 93.78 25.6 4.1 11.1 3450
123220321 224 78.0 93.99 25.6 4.4 11.9 3286
123221321 288 78.0 93.91 10.3 3.1 13.3 3297
123208321 224 77.98 93.75 16.8 2.7 10.1 3841
123223321 288 77.92 93.77 21.8 6.1 6.2 3609
123176321 160 77.88 93.71 44.6 4.0 8.3 3926
123215321 256 77.87 93.84 16.0 3.4 10.5 3772
123217321 256 77.86 93.79 10.4 2.4 10.5 4263
123171321 160 77.82 93.81 35.7 2.3 6.2 5238
123214321 256 77.81 93.82 10.5 2.4 10.5 4183
123184321 160 77.79 93.6 25.6 2.2 6.0 5329
123196321 160 77.73 93.32 25.0 2.2 7.4 5576
123231321 224 77.61 93.7 25.0 4.3 14.4 2944
123206321 224 77.59 93.61 16.8 2.7 10.2 3807
123233321 224 77.58 93.72 25.6 4.1 11.1 3455
123221321 256 77.44 93.56 10.3 2.4 10.5 4284
123235321 288 77.41 93.63 16.0 4.3 13.5 2907
123236321 224 77.38 93.54 44.6 7.8 16.2 2125
123210321 160 77.22 93.27 25.6 2.2 6.1 5982
123238321 288 77.17 93.47 10.3 3.1 13.3 3392
123239321 288 77.15 93.27 21.8 6.1 6.2 3615
123213321 224 77.1 93.37 21.8 3.9 4.5 5436
123241321 224 77.02 93.07 28.1 4.1 11.1 2952
123238321 256 76.78 93.13 10.3 2.4 10.5 4410
123235321 224 76.7 93.17 16.0 2.6 8.2 4859
123244321 288 76.5 93.35 21.8 6.1 6.2 3617
123223321 224 76.42 92.87 21.8 3.7 3.7 5984
123246321 288 76.35 93.18 16.0 3.9 12.2 3331
123247321 224 76.13 92.86 25.6 4.1 11.1 3457
123219321 160 75.96 92.5 25.6 2.1 5.7 6490
123239321 224 75.52 92.44 21.8 3.7 3.7 5991
123246321 224 75.3 92.58 16.0 2.4 7.4 5583
123244321 224 75.16 92.18 21.8 3.7 3.7 5994
123241321 160 75.1 92.08 28.1 2.1 5.7 5513
123253321 224 74.57 91.98 21.8 3.7 3.7 5984
123254321 288 73.81 91.83 11.7 3.4 5.4 5196
123255321 224 73.32 91.42 21.8 3.7 3.7 5979
123256321 224 73.28 91.73 11.7 1.8 2.5 10213
123257321 288 73.16 91.03 11.7 3.0 4.1 6050
123258321 224 72.98 91.11 21.8 3.7 3.7 5967
123259321 224 72.6 91.42 11.7 1.8 2.5 10213
123260321 288 72.37 90.59 11.7 3.0 4.1 6051
123261321 224 72.26 90.31 10.1 1.7 5.8 7026
123254321 224 72.26 90.68 11.7 2.1 3.3 8707
123257321 224 71.49 90.07 11.7 1.8 2.5 10187
123261321 176 71.31 89.69 10.1 1.1 3.6 10970
123265321 224 70.84 89.76 11.7 1.8 2.5 10210
123260321 224 70.64 89.47 11.7 1.8 2.5 10194
123258321 160 70.56 89.52 21.8 1.9 1.9 10737
123268321 224 69.76 89.07 11.7 1.8 2.5 10205
123269321 224 68.34 88.03 5.4 1.1 2.4 13079
123270321 224 68.25 88.17 11.7 1.8 2.5 10167
123269321 176 66.71 86.96 5.4 0.7 1.5 20327
123270321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Xie2016,
  title={Aggregated Residual Transformations for Deep Neural Networks},
  author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@inproceedings{hu2018senet,
  title={Squeeze-and-Excitation Networks},
  author={Jie Hu and Li Shen and Gang Sun},
  journal={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}