英文

resnext50_32x4d.ra_in1k模型卡片

一个用于图像分类的ResNeXt-B模型。

该模型具有以下特点:

  • ReLU激活函数
  • 单层7x7卷积加池化
  • 1x1卷积剪枝降采样
  • 分组的3x3瓶颈卷积

在timm中使用以下模板训练了ImageNet-1k数据集。

训练细节:

  • RandAugment (RA)方法。受EfficientNet RandAugment方法的启发并进化而来。在文章 ResNet Strikes Back 中作为B方法发表。
  • RMSProp (TF 1.0行为) 优化器,使用指数移动平均权重
  • 使用Step (指数衰减带阶梯) 学习率调度及热身训练

模型细节

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('resnext50_32x4d.ra_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnext50_32x4d.ra_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnext50_32x4d.ra_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索该模型的数据集和运行时指标: model results

model img_size top1 top5 param_count gmacs macts img/sec
12313321 320 86.72 98.17 93.6 35.2 69.7 451
12313321 288 86.51 98.08 93.6 28.5 56.4 560
12315321 288 86.49 98.03 93.6 28.5 56.4 557
12315321 224 85.96 97.82 93.6 17.2 34.2 923
12317321 224 85.11 97.44 468.5 87.3 91.1 254
12318321 416 85.0 97.12 191.9 108.4 213.8 134
12319321 352 84.96 97.22 102.1 50.2 101.2 291
12319321 320 84.73 97.18 102.1 41.5 83.7 353
12321321 384 84.71 96.99 164.0 77.6 154.7 183
12322321 288 84.57 97.08 93.6 28.5 56.4 557
12323321 320 84.45 97.08 93.2 31.5 67.8 446
12324321 352 84.43 96.97 129.9 51.1 105.5 280
12325321 288 84.36 96.92 93.6 27.6 53.0 595
12326321 320 84.35 97.04 66.8 24.1 47.7 610
12321321 288 84.3 96.94 164.0 43.7 87.1 333
12328321 224 84.28 97.17 88.8 16.5 31.2 1100
12318321 320 84.24 96.86 191.9 64.2 126.6 228
12330321 288 84.19 96.87 93.6 27.2 51.6 613
12331321 224 84.18 97.19 194.0 36.3 51.2 581
12332321 288 84.11 97.11 44.6 15.1 29.0 1144
12333321 320 83.97 96.82 64.7 31.2 67.3 518
12323321 256 83.87 96.75 93.2 20.2 43.4 692
12322321 224 83.86 96.65 93.6 17.2 34.2 923
12336321 320 83.72 96.61 86.6 24.3 48.1 617
12326321 256 83.69 96.78 66.8 15.4 30.6 943
12325321 224 83.68 96.61 93.6 16.7 32.0 986
12339321 320 83.67 96.74 60.2 24.1 47.7 706
12324321 256 83.59 96.61 129.9 27.1 55.8 526
12330321 224 83.58 96.4 93.6 16.5 31.2 1013
12332321 224 83.54 96.83 44.6 9.1 17.6 1864
12343321 288 83.46 96.54 60.2 19.1 37.3 904
12344321 224 83.35 96.85 194.0 36.3 51.2 582
12333321 256 83.23 96.53 64.7 20.0 43.1 809
12346321 224 83.22 96.75 44.2 8.0 21.2 1814
12347321 288 83.16 96.38 83.5 25.7 51.6 590
12339321 256 83.14 96.38 60.2 15.4 30.5 1096
12349321 320 83.02 96.45 44.6 16.5 34.8 992
12350321 288 82.98 96.54 44.6 13.4 28.2 1077
12351321 224 82.98 96.25 83.5 15.5 31.2 989
12336321 256 82.86 96.28 86.6 15.6 30.8 951
12353321 224 82.83 96.22 88.8 16.5 31.2 1099
12343321 224 82.8 96.13 60.2 11.6 22.6 1486
12355321 288 82.8 96.32 44.6 13.0 26.8 1291
12356321 288 82.74 95.71 60.2 19.1 37.3 905
12357321 224 82.69 96.63 88.8 16.5 31.2 1100
12358321 288 82.62 95.75 60.2 19.1 37.3 904
12359321 288 82.61 96.49 25.6 8.9 20.6 1729
12360321 288 82.53 96.13 36.8 9.9 21.5 1773
12361321 224 82.5 96.02 126.9 22.8 21.2 1078
12347321 224 82.46 95.92 83.5 15.5 31.2 987
12363321 288 82.36 96.18 35.7 8.1 20.9 1964
12364321 320 82.35 96.14 25.6 8.8 24.1 1386
12365321 288 82.31 95.63 44.6 13.0 26.8 1291
12366321 288 82.29 96.01 63.6 13.6 28.5 1078
12367321 224 82.29 96.0 60.2 11.6 22.6 1484
12368321 288 82.27 96.06 68.9 18.9 23.8 1176
12349321 256 82.26 96.07 44.6 10.6 22.2 1542
12370321 288 82.24 95.73 44.6 13.0 26.8 1290
12371321 288 82.2 96.14 27.6 7.0 23.8 1547
12350321 224 82.18 96.05 44.6 8.1 17.1 1771
12373321 224 82.17 96.22 25.0 4.3 14.4 2943
12374321 288 82.12 95.65 25.6 7.1 19.6 1704
12375321 288 82.03 95.94 25.0 7.0 23.8 1745
12376321 288 82.0 96.15 24.9 5.8 12.7 1787
12360321 256 81.99 95.85 36.8 7.8 17.0 2230
12353321 176 81.98 95.72 88.8 10.3 19.4 1768
12356321 224 81.97 95.24 60.2 11.6 22.6 1486
12355321 224 81.93 95.75 44.6 7.8 16.2 2122
12381321 224 81.9 95.77 44.6 7.8 16.2 2118
12382321 224 81.84 96.1 194.0 36.3 51.2 583
12363321 256 81.78 95.94 35.7 6.4 16.6 2471
12358321 224 81.77 95.22 60.2 11.6 22.6 1485
12359321 224 81.74 96.06 25.6 5.4 12.4 2813
12386321 288 81.65 95.54 25.6 7.1 19.6 1703
12387321 288 81.64 95.88 25.6 7.2 19.7 1694
12388321 224 81.62 96.04 88.8 16.5 31.2 1101
12389321 224 81.61 95.76 68.9 11.4 14.4 1930
12390321 288 81.61 95.83 25.6 8.5 19.2 1868
12365321 224 81.5 95.16 44.6 7.8 16.2 2125
12392321 288 81.48 95.16 25.0 7.0 23.8 1745
12393321 288 81.47 95.71 25.9 6.9 18.6 2071
12368321 224 81.45 95.53 68.9 11.4 14.4 1929
12395321 288 81.44 95.22 25.6 7.2 19.7 1908
12364321 256 81.44 95.67 25.6 5.6 15.4 2168
12397321 288 81.4 95.82 30.2 6.8 13.9 2132
12398321 288 81.37 95.74 25.6 7.2 19.7 1910
12370321 224 81.32 95.19 44.6 7.8 16.2 2125
123100321 288 81.3 95.65 28.1 6.8 18.4 1803
123101321 288 81.3 95.11 25.0 7.0 23.8 1746
12371321 224 81.27 95.62 27.6 4.3 14.4 2591
12374321 224 81.26 95.16 25.6 4.3 11.8 2823
123104321 288 81.23 95.54 15.7 4.8 19.6 2117
123105321 224 81.23 95.35 115.1 20.8 38.7 545
123106321 288 81.22 95.11 25.6 6.8 18.4 2089
123107321 288 81.22 95.63 25.6 6.8 18.4 676
123108321 288 81.18 95.09 25.6 7.2 19.7 1908
123109321 224 81.18 95.98 25.6 4.1 11.1 3455
123110321 224 81.17 95.34 25.0 4.3 14.4 2933
12375321 224 81.1 95.33 25.0 4.3 14.4 2934
123112321 288 81.1 95.23 28.1 6.8 18.4 1801
123113321 288 81.1 95.12 28.1 6.8 18.4 1799
123114321 224 81.02 95.41 60.3 12.9 25.0 1347
123115321 288 80.97 95.44 25.6 6.8 18.4 2085
12393321 256 80.94 95.45 25.9 5.4 14.7 2571
123117321 224 80.93 95.73 44.2 8.0 21.2 1814
123118321 288 80.91 95.55 25.6 6.8 18.4 2084
123119321 224 80.9 95.31 49.0 8.0 21.3 1585
123120321 224 80.9 95.3 88.2 15.5 31.2 918
123121321 288 80.86 95.52 25.6 6.8 18.4 2085
123122321 224 80.85 95.43 25.6 4.1 11.1 3450
12386321 224 80.84 95.02 25.6 4.3 11.8 2821
12376321 224 80.79 95.62 24.9 3.5 7.7 2961
123125321 288 80.79 95.36 19.8 6.0 14.8 2506
123126321 288 80.79 95.58 19.9 4.2 10.6 2349
123127321 288 80.78 94.99 25.6 6.8 18.4 2088
123128321 288 80.71 95.43 25.6 6.8 18.4 2087
123129321 288 80.7 95.39 25.0 7.0 23.8 1749
12366321 192 80.69 95.24 63.6 6.0 12.7 2270
12395321 224 80.68 94.71 25.6 4.4 11.9 3162
123132321 288 80.68 95.36 19.7 6.0 14.8 2637
123133321 224 80.67 95.3 25.6 4.1 11.1 3452
123134321 288 80.67 95.42 25.0 7.4 25.1 1626
12390321 224 80.63 95.21 25.6 5.2 11.6 3034
12387321 224 80.61 95.32 25.6 4.4 11.9 2813
123137321 224 80.61 94.99 83.5 15.5 31.2 989
123138321 288 80.6 95.31 19.9 6.0 14.8 2578
123104321 256 80.57 95.17 15.7 3.8 15.5 2710
123140321 224 80.56 95.0 60.2 11.6 22.6 1483
12398321 224 80.53 95.16 25.6 4.4 11.9 3164
12392321 224 80.53 94.46 25.0 4.3 14.4 2930
12361321 176 80.48 94.98 126.9 14.3 13.2 1719
123144321 224 80.47 95.2 60.2 11.8 23.4 1428
123145321 288 80.45 95.32 25.6 6.8 18.4 2086
12397321 224 80.45 95.24 30.2 4.1 8.4 3530
123101321 224 80.45 94.63 25.0 4.3 14.4 2936
12389321 176 80.43 95.09 68.9 7.3 9.0 3015
123149321 224 80.42 95.01 44.6 8.1 17.0 2007
123106321 224 80.38 94.6 25.6 4.1 11.1 3461
123125321 256 80.36 95.1 19.8 4.8 11.7 3267
123152321 224 80.34 94.93 44.2 8.0 21.2 1814
123153321 224 80.32 95.4 25.0 4.3 14.4 2941
123154321 224 80.28 95.16 44.7 9.2 18.6 1851
123100321 224 80.26 95.08 28.1 4.1 11.1 2972
123156321 288 80.24 95.24 25.6 8.5 19.9 1523
123108321 224 80.22 94.63 25.6 4.4 11.9 3162
12367321 176 80.2 94.64 60.2 7.2 14.0 2346
123112321 224 80.08 94.74 28.1 4.1 11.1 2969
123132321 256 80.08 94.97 19.7 4.8 11.7 3284
123138321 256 80.06 94.99 19.9 4.8 11.7 3216
123107321 224 80.06 94.95 25.6 4.1 11.1 1109
123113321 224 80.02 94.71 28.1 4.1 11.1 2962
123164321 288 79.97 95.05 25.6 6.8 18.4 2086
123165321 224 79.92 94.84 60.2 11.8 23.4 1455
123166321 224 79.91 94.82 27.6 4.3 14.4 2591
123115321 224 79.91 94.67 25.6 4.1 11.1 3456
12381321 176 79.9 94.6 44.6 4.9 10.1 3341
123169321 224 79.89 94.97 35.7 4.5 12.1 2774
123121321 224 79.88 94.87 25.6 4.1 11.1 3455
123171321 320 79.86 95.07 16.0 5.2 16.4 2168
123127321 224 79.85 94.56 25.6 4.1 11.1 3460
123173321 288 79.83 94.97 25.6 6.8 18.4 2087
123174321 224 79.82 94.62 44.6 7.8 16.2 2114
123129321 224 79.76 94.6 25.0 4.3 14.4 2943
123118321 224 79.74 94.95 25.6 4.1 11.1 3455
123126321 224 79.74 94.87 19.9 2.5 6.4 3929
123178321 288 79.71 94.83 19.7 6.0 14.8 2710
123179321 224 79.68 94.74 60.2 11.6 22.6 1486
123134321 224 79.67 94.87 25.0 4.5 15.2 2729
123181321 288 79.63 94.91 25.6 6.8 18.4 2086
123182321 224 79.56 94.72 25.6 4.3 11.8 2805
123183321 224 79.53 94.58 44.6 8.1 17.0 2062
123128321 224 79.52 94.61 25.6 4.1 11.1 3459
123122321 176 79.42 94.64 25.6 2.6 6.9 5397
123186321 288 79.4 94.66 18.0 5.9 14.6 2752
123145321 224 79.38 94.57 25.6 4.1 11.1 3459
123110321 176 79.37 94.3 25.0 2.7 9.0 4577
123189321 224 79.36 94.43 25.0 4.3 14.4 2942
123190321 224 79.31 94.52 88.8 16.5 31.2 1100
123191321 224 79.31 94.53 44.6 7.8 16.2 2125
123156321 224 79.31 94.63 25.6 5.2 12.0 2524
123133321 176 79.27 94.49 25.6 2.6 6.9 5404
123194321 224 79.25 94.31 25.0 4.3 14.4 2931
123195321 224 79.22 94.84 25.6 4.1 11.1 3451
123178321 256 79.21 94.56 19.7 4.8 11.7 3392
123197321 224 79.07 94.48 25.6 4.4 11.9 3162
123164321 224 79.03 94.38 25.6 4.1 11.1 3453
123199321 224 79.01 94.39 25.6 4.1 11.1 3461
123186321 256 79.01 94.37 18.0 4.6 11.6 3440
123171321 256 78.9 94.54 16.0 3.4 10.5 3421
123140321 160 78.89 94.11 60.2 5.9 11.5 2745
123203321 224 78.84 94.28 126.9 22.8 21.2 1079
123204321 288 78.83 94.24 16.8 4.5 16.8 2251
123173321 224 78.81 94.32 25.6 4.1 11.1 3454
123206321 288 78.74 94.33 16.8 4.5 16.7 2264
123207321 224 78.72 94.23 25.7 5.5 13.5 2796
123208321 224 78.71 94.24 25.6 4.4 11.9 3154
123209321 224 78.47 94.09 68.9 11.4 14.4 1934
123181321 224 78.46 94.27 25.6 4.1 11.1 3454
123211321 288 78.43 94.35 21.8 6.5 7.5 3291
123212321 288 78.42 94.04 10.5 3.1 13.3 3226
123213321 320 78.33 94.13 16.0 5.2 16.4 2391
123214321 224 78.32 94.04 60.2 11.6 22.6 1487
123215321 288 78.28 94.1 10.4 3.1 13.3 3062
123216321 256 78.25 94.1 10.7 2.5 12.5 3393
123217321 224 78.06 93.78 25.6 4.1 11.1 3450
123218321 224 78.0 93.99 25.6 4.4 11.9 3286
123219321 288 78.0 93.91 10.3 3.1 13.3 3297
123206321 224 77.98 93.75 16.8 2.7 10.1 3841
123221321 288 77.92 93.77 21.8 6.1 6.2 3609
123174321 160 77.88 93.71 44.6 4.0 8.3 3926
123213321 256 77.87 93.84 16.0 3.4 10.5 3772
123215321 256 77.86 93.79 10.4 2.4 10.5 4263
123169321 160 77.82 93.81 35.7 2.3 6.2 5238
123212321 256 77.81 93.82 10.5 2.4 10.5 4183
123182321 160 77.79 93.6 25.6 2.2 6.0 5329
123194321 160 77.73 93.32 25.0 2.2 7.4 5576
123229321 224 77.61 93.7 25.0 4.3 14.4 2944
123204321 224 77.59 93.61 16.8 2.7 10.2 3807
123231321 224 77.58 93.72 25.6 4.1 11.1 3455
123219321 256 77.44 93.56 10.3 2.4 10.5 4284
123233321 288 77.41 93.63 16.0 4.3 13.5 2907
123234321 224 77.38 93.54 44.6 7.8 16.2 2125
123208321 160 77.22 93.27 25.6 2.2 6.1 5982
123236321 288 77.17 93.47 10.3 3.1 13.3 3392
123237321 288 77.15 93.27 21.8 6.1 6.2 3615
123211321 224 77.1 93.37 21.8 3.9 4.5 5436
123239321 224 77.02 93.07 28.1 4.1 11.1 2952
123236321 256 76.78 93.13 10.3 2.4 10.5 4410
123233321 224 76.7 93.17 16.0 2.6 8.2 4859
123242321 288 76.5 93.35 21.8 6.1 6.2 3617
123221321 224 76.42 92.87 21.8 3.7 3.7 5984
123244321 288 76.35 93.18 16.0 3.9 12.2 3331
123245321 224 76.13 92.86 25.6 4.1 11.1 3457
123217321 160 75.96 92.5 25.6 2.1 5.7 6490
123237321 224 75.52 92.44 21.8 3.7 3.7 5991
123244321 224 75.3 92.58 16.0 2.4 7.4 5583
123242321 224 75.16 92.18 21.8 3.7 3.7 5994
123239321 160 75.1 92.08 28.1 2.1 5.7 5513
123251321 224 74.57 91.98 21.8 3.7 3.7 5984
123252321 288 73.81 91.83 11.7 3.4 5.4 5196
123253321 224 73.32 91.42 21.8 3.7 3.7 5979
123254321 224 73.28 91.73 11.7 1.8 2.5 10213
123255321 288 73.16 91.03 11.7 3.0 4.1 6050
123256321 224 72.98 91.11 21.8 3.7 3.7 5967
123257321 224 72.6 91.42 11.7 1.8 2.5 10213
123258321 288 72.37 90.59 11.7 3.0 4.1 6051
123259321 224 72.26 90.31 10.1 1.7 5.8 7026
123252321 224 72.26 90.68 11.7 2.1 3.3 8707
123255321 224 71.49 90.07 11.7 1.8 2.5 10187
123259321 176 71.31 89.69 10.1 1.1 3.6 10970
123263321 224 70.84 89.76 11.7 1.8 2.5 10210
123258321 224 70.64 89.47 11.7 1.8 2.5 10194
123256321 160 70.56 89.52 21.8 1.9 1.9 10737
123266321 224 69.76 89.07 11.7 1.8 2.5 10205
123267321 224 68.34 88.03 5.4 1.1 2.4 13079
123268321 224 68.25 88.17 11.7 1.8 2.5 10167
123267321 176 66.71 86.96 5.4 0.7 1.5 20327
123268321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Xie2016,
  title={Aggregated Residual Transformations for Deep Neural Networks},
  author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}