模型:

timm/resnet101.tv2_in1k

英文

resnet101.tv2_in1k 的模型卡片

一个ResNet-B图像分类模型。

这个模型具有以下特点:

  • ReLU激活函数
  • 单层7x7卷积池化
  • 1x1卷积辅助下采样

在 torchvision 中使用 ImageNet-1k 训练得到,使用了 v2 recipes 次迭代。

模型详情

模型使用

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('resnet101.tv2_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet101.tv2_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 88, 88])
    #  torch.Size([1, 256, 44, 44])
    #  torch.Size([1, 512, 22, 22])
    #  torch.Size([1, 1024, 11, 11])
    #  torch.Size([1, 2048, 6, 6])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet101.tv2_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 6, 6) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在 timm 上探索这个模型的数据集和运行时指标: model results .

model img_size top1 top5 param_count gmacs macts img/sec
1239321 320 86.72 98.17 93.6 35.2 69.7 451
1239321 288 86.51 98.08 93.6 28.5 56.4 560
12311321 288 86.49 98.03 93.6 28.5 56.4 557
12311321 224 85.96 97.82 93.6 17.2 34.2 923
12313321 224 85.11 97.44 468.5 87.3 91.1 254
12314321 416 85.0 97.12 191.9 108.4 213.8 134
12315321 352 84.96 97.22 102.1 50.2 101.2 291
12315321 320 84.73 97.18 102.1 41.5 83.7 353
12317321 384 84.71 96.99 164.0 77.6 154.7 183
12318321 288 84.57 97.08 93.6 28.5 56.4 557
12319321 320 84.45 97.08 93.2 31.5 67.8 446
12320321 352 84.43 96.97 129.9 51.1 105.5 280
12321321 288 84.36 96.92 93.6 27.6 53.0 595
12322321 320 84.35 97.04 66.8 24.1 47.7 610
12317321 288 84.3 96.94 164.0 43.7 87.1 333
12324321 224 84.28 97.17 88.8 16.5 31.2 1100
12314321 320 84.24 96.86 191.9 64.2 126.6 228
12326321 288 84.19 96.87 93.6 27.2 51.6 613
12327321 224 84.18 97.19 194.0 36.3 51.2 581
12328321 288 84.11 97.11 44.6 15.1 29.0 1144
12329321 320 83.97 96.82 64.7 31.2 67.3 518
12319321 256 83.87 96.75 93.2 20.2 43.4 692
12318321 224 83.86 96.65 93.6 17.2 34.2 923
12332321 320 83.72 96.61 86.6 24.3 48.1 617
12322321 256 83.69 96.78 66.8 15.4 30.6 943
12321321 224 83.68 96.61 93.6 16.7 32.0 986
12335321 320 83.67 96.74 60.2 24.1 47.7 706
12320321 256 83.59 96.61 129.9 27.1 55.8 526
12326321 224 83.58 96.4 93.6 16.5 31.2 1013
12328321 224 83.54 96.83 44.6 9.1 17.6 1864
12339321 288 83.46 96.54 60.2 19.1 37.3 904
12340321 224 83.35 96.85 194.0 36.3 51.2 582
12329321 256 83.23 96.53 64.7 20.0 43.1 809
12342321 224 83.22 96.75 44.2 8.0 21.2 1814
12343321 288 83.16 96.38 83.5 25.7 51.6 590
12335321 256 83.14 96.38 60.2 15.4 30.5 1096
12345321 320 83.02 96.45 44.6 16.5 34.8 992
12346321 288 82.98 96.54 44.6 13.4 28.2 1077
12347321 224 82.98 96.25 83.5 15.5 31.2 989
12332321 256 82.86 96.28 86.6 15.6 30.8 951
12349321 224 82.83 96.22 88.8 16.5 31.2 1099
12339321 224 82.8 96.13 60.2 11.6 22.6 1486
12351321 288 82.8 96.32 44.6 13.0 26.8 1291
12352321 288 82.74 95.71 60.2 19.1 37.3 905
12353321 224 82.69 96.63 88.8 16.5 31.2 1100
12354321 288 82.62 95.75 60.2 19.1 37.3 904
12355321 288 82.61 96.49 25.6 8.9 20.6 1729
12356321 288 82.53 96.13 36.8 9.9 21.5 1773
12357321 224 82.5 96.02 126.9 22.8 21.2 1078
12343321 224 82.46 95.92 83.5 15.5 31.2 987
12359321 288 82.36 96.18 35.7 8.1 20.9 1964
12360321 320 82.35 96.14 25.6 8.8 24.1 1386
12361321 288 82.31 95.63 44.6 13.0 26.8 1291
12362321 288 82.29 96.01 63.6 13.6 28.5 1078
12363321 224 82.29 96.0 60.2 11.6 22.6 1484
12364321 288 82.27 96.06 68.9 18.9 23.8 1176
12345321 256 82.26 96.07 44.6 10.6 22.2 1542
12366321 288 82.24 95.73 44.6 13.0 26.8 1290
12367321 288 82.2 96.14 27.6 7.0 23.8 1547
12346321 224 82.18 96.05 44.6 8.1 17.1 1771
12369321 224 82.17 96.22 25.0 4.3 14.4 2943
12370321 288 82.12 95.65 25.6 7.1 19.6 1704
12371321 288 82.03 95.94 25.0 7.0 23.8 1745
12372321 288 82.0 96.15 24.9 5.8 12.7 1787
12356321 256 81.99 95.85 36.8 7.8 17.0 2230
12349321 176 81.98 95.72 88.8 10.3 19.4 1768
12352321 224 81.97 95.24 60.2 11.6 22.6 1486
12351321 224 81.93 95.75 44.6 7.8 16.2 2122
12377321 224 81.9 95.77 44.6 7.8 16.2 2118
12378321 224 81.84 96.1 194.0 36.3 51.2 583
12359321 256 81.78 95.94 35.7 6.4 16.6 2471
12354321 224 81.77 95.22 60.2 11.6 22.6 1485
12355321 224 81.74 96.06 25.6 5.4 12.4 2813
12382321 288 81.65 95.54 25.6 7.1 19.6 1703
12383321 288 81.64 95.88 25.6 7.2 19.7 1694
12384321 224 81.62 96.04 88.8 16.5 31.2 1101
12385321 224 81.61 95.76 68.9 11.4 14.4 1930
12386321 288 81.61 95.83 25.6 8.5 19.2 1868
12361321 224 81.5 95.16 44.6 7.8 16.2 2125
12388321 288 81.48 95.16 25.0 7.0 23.8 1745
12389321 288 81.47 95.71 25.9 6.9 18.6 2071
12364321 224 81.45 95.53 68.9 11.4 14.4 1929
12391321 288 81.44 95.22 25.6 7.2 19.7 1908
12360321 256 81.44 95.67 25.6 5.6 15.4 2168
12393321 288 81.4 95.82 30.2 6.8 13.9 2132
12394321 288 81.37 95.74 25.6 7.2 19.7 1910
12366321 224 81.32 95.19 44.6 7.8 16.2 2125
12396321 288 81.3 95.65 28.1 6.8 18.4 1803
12397321 288 81.3 95.11 25.0 7.0 23.8 1746
12367321 224 81.27 95.62 27.6 4.3 14.4 2591
12370321 224 81.26 95.16 25.6 4.3 11.8 2823
123100321 288 81.23 95.54 15.7 4.8 19.6 2117
123101321 224 81.23 95.35 115.1 20.8 38.7 545
123102321 288 81.22 95.11 25.6 6.8 18.4 2089
123103321 288 81.22 95.63 25.6 6.8 18.4 676
123104321 288 81.18 95.09 25.6 7.2 19.7 1908
123105321 224 81.18 95.98 25.6 4.1 11.1 3455
123106321 224 81.17 95.34 25.0 4.3 14.4 2933
12371321 224 81.1 95.33 25.0 4.3 14.4 2934
123108321 288 81.1 95.23 28.1 6.8 18.4 1801
123109321 288 81.1 95.12 28.1 6.8 18.4 1799
123110321 224 81.02 95.41 60.3 12.9 25.0 1347
123111321 288 80.97 95.44 25.6 6.8 18.4 2085
12389321 256 80.94 95.45 25.9 5.4 14.7 2571
123113321 224 80.93 95.73 44.2 8.0 21.2 1814
123114321 288 80.91 95.55 25.6 6.8 18.4 2084
123115321 224 80.9 95.31 49.0 8.0 21.3 1585
123116321 224 80.9 95.3 88.2 15.5 31.2 918
123117321 288 80.86 95.52 25.6 6.8 18.4 2085
123118321 224 80.85 95.43 25.6 4.1 11.1 3450
12382321 224 80.84 95.02 25.6 4.3 11.8 2821
12372321 224 80.79 95.62 24.9 3.5 7.7 2961
123121321 288 80.79 95.36 19.8 6.0 14.8 2506
123122321 288 80.79 95.58 19.9 4.2 10.6 2349
123123321 288 80.78 94.99 25.6 6.8 18.4 2088
123124321 288 80.71 95.43 25.6 6.8 18.4 2087
123125321 288 80.7 95.39 25.0 7.0 23.8 1749
12362321 192 80.69 95.24 63.6 6.0 12.7 2270
12391321 224 80.68 94.71 25.6 4.4 11.9 3162
123128321 288 80.68 95.36 19.7 6.0 14.8 2637
123129321 224 80.67 95.3 25.6 4.1 11.1 3452
123130321 288 80.67 95.42 25.0 7.4 25.1 1626
12386321 224 80.63 95.21 25.6 5.2 11.6 3034
12383321 224 80.61 95.32 25.6 4.4 11.9 2813
123133321 224 80.61 94.99 83.5 15.5 31.2 989
123134321 288 80.6 95.31 19.9 6.0 14.8 2578
123100321 256 80.57 95.17 15.7 3.8 15.5 2710
123136321 224 80.56 95.0 60.2 11.6 22.6 1483
12394321 224 80.53 95.16 25.6 4.4 11.9 3164
12388321 224 80.53 94.46 25.0 4.3 14.4 2930
12357321 176 80.48 94.98 126.9 14.3 13.2 1719
123140321 224 80.47 95.2 60.2 11.8 23.4 1428
123141321 288 80.45 95.32 25.6 6.8 18.4 2086
12393321 224 80.45 95.24 30.2 4.1 8.4 3530
12397321 224 80.45 94.63 25.0 4.3 14.4 2936
12385321 176 80.43 95.09 68.9 7.3 9.0 3015
123145321 224 80.42 95.01 44.6 8.1 17.0 2007
123102321 224 80.38 94.6 25.6 4.1 11.1 3461
123121321 256 80.36 95.1 19.8 4.8 11.7 3267
123148321 224 80.34 94.93 44.2 8.0 21.2 1814
123149321 224 80.32 95.4 25.0 4.3 14.4 2941
123150321 224 80.28 95.16 44.7 9.2 18.6 1851
12396321 224 80.26 95.08 28.1 4.1 11.1 2972
123152321 288 80.24 95.24 25.6 8.5 19.9 1523
123104321 224 80.22 94.63 25.6 4.4 11.9 3162
12363321 176 80.2 94.64 60.2 7.2 14.0 2346
123108321 224 80.08 94.74 28.1 4.1 11.1 2969
123128321 256 80.08 94.97 19.7 4.8 11.7 3284
123134321 256 80.06 94.99 19.9 4.8 11.7 3216
123103321 224 80.06 94.95 25.6 4.1 11.1 1109
123109321 224 80.02 94.71 28.1 4.1 11.1 2962
123160321 288 79.97 95.05 25.6 6.8 18.4 2086
123161321 224 79.92 94.84 60.2 11.8 23.4 1455
123162321 224 79.91 94.82 27.6 4.3 14.4 2591
123111321 224 79.91 94.67 25.6 4.1 11.1 3456
12377321 176 79.9 94.6 44.6 4.9 10.1 3341
123165321 224 79.89 94.97 35.7 4.5 12.1 2774
123117321 224 79.88 94.87 25.6 4.1 11.1 3455
123167321 320 79.86 95.07 16.0 5.2 16.4 2168
123123321 224 79.85 94.56 25.6 4.1 11.1 3460
123169321 288 79.83 94.97 25.6 6.8 18.4 2087
123170321 224 79.82 94.62 44.6 7.8 16.2 2114
123125321 224 79.76 94.6 25.0 4.3 14.4 2943
123114321 224 79.74 94.95 25.6 4.1 11.1 3455
123122321 224 79.74 94.87 19.9 2.5 6.4 3929
123174321 288 79.71 94.83 19.7 6.0 14.8 2710
123175321 224 79.68 94.74 60.2 11.6 22.6 1486
123130321 224 79.67 94.87 25.0 4.5 15.2 2729
123177321 288 79.63 94.91 25.6 6.8 18.4 2086
123178321 224 79.56 94.72 25.6 4.3 11.8 2805
123179321 224 79.53 94.58 44.6 8.1 17.0 2062
123124321 224 79.52 94.61 25.6 4.1 11.1 3459
123118321 176 79.42 94.64 25.6 2.6 6.9 5397
123182321 288 79.4 94.66 18.0 5.9 14.6 2752
123141321 224 79.38 94.57 25.6 4.1 11.1 3459
123106321 176 79.37 94.3 25.0 2.7 9.0 4577
123185321 224 79.36 94.43 25.0 4.3 14.4 2942
123186321 224 79.31 94.52 88.8 16.5 31.2 1100
123187321 224 79.31 94.53 44.6 7.8 16.2 2125
123152321 224 79.31 94.63 25.6 5.2 12.0 2524
123129321 176 79.27 94.49 25.6 2.6 6.9 5404
123190321 224 79.25 94.31 25.0 4.3 14.4 2931
123191321 224 79.22 94.84 25.6 4.1 11.1 3451
123174321 256 79.21 94.56 19.7 4.8 11.7 3392
123193321 224 79.07 94.48 25.6 4.4 11.9 3162
123160321 224 79.03 94.38 25.6 4.1 11.1 3453
123195321 224 79.01 94.39 25.6 4.1 11.1 3461
123182321 256 79.01 94.37 18.0 4.6 11.6 3440
123167321 256 78.9 94.54 16.0 3.4 10.5 3421
123136321 160 78.89 94.11 60.2 5.9 11.5 2745
123199321 224 78.84 94.28 126.9 22.8 21.2 1079
123200321 288 78.83 94.24 16.8 4.5 16.8 2251
123169321 224 78.81 94.32 25.6 4.1 11.1 3454
123202321 288 78.74 94.33 16.8 4.5 16.7 2264
123203321 224 78.72 94.23 25.7 5.5 13.5 2796
123204321 224 78.71 94.24 25.6 4.4 11.9 3154
123205321 224 78.47 94.09 68.9 11.4 14.4 1934
123177321 224 78.46 94.27 25.6 4.1 11.1 3454
123207321 288 78.43 94.35 21.8 6.5 7.5 3291
123208321 288 78.42 94.04 10.5 3.1 13.3 3226
123209321 320 78.33 94.13 16.0 5.2 16.4 2391
123210321 224 78.32 94.04 60.2 11.6 22.6 1487
123211321 288 78.28 94.1 10.4 3.1 13.3 3062
123212321 256 78.25 94.1 10.7 2.5 12.5 3393
123213321 224 78.06 93.78 25.6 4.1 11.1 3450
123214321 224 78.0 93.99 25.6 4.4 11.9 3286
123215321 288 78.0 93.91 10.3 3.1 13.3 3297
123202321 224 77.98 93.75 16.8 2.7 10.1 3841
123217321 288 77.92 93.77 21.8 6.1 6.2 3609
123170321 160 77.88 93.71 44.6 4.0 8.3 3926
123209321 256 77.87 93.84 16.0 3.4 10.5 3772
123211321 256 77.86 93.79 10.4 2.4 10.5 4263
123165321 160 77.82 93.81 35.7 2.3 6.2 5238
123208321 256 77.81 93.82 10.5 2.4 10.5 4183
123178321 160 77.79 93.6 25.6 2.2 6.0 5329
123190321 160 77.73 93.32 25.0 2.2 7.4 5576
123225321 224 77.61 93.7 25.0 4.3 14.4 2944
123200321 224 77.59 93.61 16.8 2.7 10.2 3807
123227321 224 77.58 93.72 25.6 4.1 11.1 3455
123215321 256 77.44 93.56 10.3 2.4 10.5 4284
123229321 288 77.41 93.63 16.0 4.3 13.5 2907
123230321 224 77.38 93.54 44.6 7.8 16.2 2125
123204321 160 77.22 93.27 25.6 2.2 6.1 5982
123232321 288 77.17 93.47 10.3 3.1 13.3 3392
123233321 288 77.15 93.27 21.8 6.1 6.2 3615
123207321 224 77.1 93.37 21.8 3.9 4.5 5436
123235321 224 77.02 93.07 28.1 4.1 11.1 2952
123232321 256 76.78 93.13 10.3 2.4 10.5 4410
123229321 224 76.7 93.17 16.0 2.6 8.2 4859
123238321 288 76.5 93.35 21.8 6.1 6.2 3617
123217321 224 76.42 92.87 21.8 3.7 3.7 5984
123240321 288 76.35 93.18 16.0 3.9 12.2 3331
123241321 224 76.13 92.86 25.6 4.1 11.1 3457
123213321 160 75.96 92.5 25.6 2.1 5.7 6490
123233321 224 75.52 92.44 21.8 3.7 3.7 5991
123240321 224 75.3 92.58 16.0 2.4 7.4 5583
123238321 224 75.16 92.18 21.8 3.7 3.7 5994
123235321 160 75.1 92.08 28.1 2.1 5.7 5513
123247321 224 74.57 91.98 21.8 3.7 3.7 5984
123248321 288 73.81 91.83 11.7 3.4 5.4 5196
123249321 224 73.32 91.42 21.8 3.7 3.7 5979
123250321 224 73.28 91.73 11.7 1.8 2.5 10213
123251321 288 73.16 91.03 11.7 3.0 4.1 6050
123252321 224 72.98 91.11 21.8 3.7 3.7 5967
123253321 224 72.6 91.42 11.7 1.8 2.5 10213
123254321 288 72.37 90.59 11.7 3.0 4.1 6051
123255321 224 72.26 90.31 10.1 1.7 5.8 7026
123248321 224 72.26 90.68 11.7 2.1 3.3 8707
123251321 224 71.49 90.07 11.7 1.8 2.5 10187
123255321 176 71.31 89.69 10.1 1.1 3.6 10970
123259321 224 70.84 89.76 11.7 1.8 2.5 10210
123254321 224 70.64 89.47 11.7 1.8 2.5 10194
123252321 160 70.56 89.52 21.8 1.9 1.9 10737
123262321 224 69.76 89.07 11.7 1.8 2.5 10205
123263321 224 68.34 88.03 5.4 1.1 2.4 13079
123264321 224 68.25 88.17 11.7 1.8 2.5 10167
123263321 176 66.71 86.96 5.4 0.7 1.5 20327
123264321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}