模型:

timm/maxvit_xlarge_tf_224.in21k

英文

maxvit_xlarge_tf_224.in21k模型卡片

一个官方的MaxViT图像分类模型。由论文作者在ImageNet-21k(ImageNet-22k的21843个Google特定实例)上使用tensorflow训练而成。

由Ross Wightman将官方的Tensorflow实现( https://github.com/google-research/maxvit )移植到PyTorch。

maxxvit.py 中的模型变体

MaxxViT包括一些相关的模型架构,它们共享一个共同的结构,包括:

  • CoAtNet-在早期阶段使用MBConv(深度可分离)卷积块与后期的自注意力Transformer块相结合。
  • MaxViT-统一的块分布在所有阶段,每个阶段包含一个MBConv(深度可分离)卷积块,后面是两个不同分区方案(窗口跟随网格)的自注意力块。
  • CoAtNeXt-使用ConvNeXt块代替CoAtNet中的MBConv块的timm特定架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-使用ConvNeXt块代替MaxViT中的MBConv块的timm特定架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2-MaxxViT的变体,删除窗口块注意力,仅保留ConvNeXt块和网格注意力,通过增加宽度来补偿。

除了上述主要变体外,模型之间还有更细微的差异。所有带有字符串rw的模型名称都是timm特定配置,具有有利于PyTorch eager use的建模调整。这些模型是在进行初始的模型复现训练时创建的,因此存在差异。所有带有字符串tf的模型都是与原始论文作者的Tensorflow模型完全匹配,并将权重移植到PyTorch。这包括一些MaxViT模型。官方的CoAtNet模型从未发布。

模型详细信息

  • 模型类型:图像分类/特征主干
  • 模型统计信息:
    • 参数(M):507.0
    • GMACs:97.5
    • 激活数(M):191.0
    • 图像大小:224 x 224
  • 论文:
  • 数据集:ImageNet-21k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('maxvit_xlarge_tf_224.in21k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_xlarge_tf_224.in21k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 192, 112, 112])
    #  torch.Size([1, 192, 56, 56])
    #  torch.Size([1, 384, 28, 28])
    #  torch.Size([1, 768, 14, 14])
    #  torch.Size([1, 1536, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_xlarge_tf_224.in21k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1536, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型对比

按Top-1指标

model top1 top5 samples / sec Params (M) GMAC Act (M)
1239321 88.53 98.64 21.76 475.77 534.14 1413.22
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12322321 86.52 97.88 36.04 212.33 244.75 942.15
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12351321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本/秒)

model top1 top5 samples / sec Params (M) GMAC Act (M)
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12351321 80.53 95.21 1594.71 7.52 1.85 24.86
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12322321 86.52 97.88 36.04 212.33 244.75 942.15
1239321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}