模型:

timm/maxvit_tiny_rw_224.sw_in1k

英文

maxvit_tiny_rw_224.sw_in1k的模型卡片

一个timm特定的MaxViT图像分类模型,由Ross Wightman在ImageNet-1k上使用timm进行训练。

ImageNet-1k的训练使用了 TRC 计划的TPU支持。

maxxvit.py 中的模型变体

MaxxViT涵盖了许多相关的模型架构,共享一个共同的结构,包括:

  • CoAtNet - 在早期阶段使用MBConv(深度可分离)卷积块,后期阶段使用自注意力转换块。
  • MaxViT - 所有阶段均使用统一的块,每个块包含一个MBConv(深度可分离)卷积块,后跟两个具有不同分区方案(窗口后跟网格)的自注意块。
  • CoAtNeXt - 在CoAtNet中使用ConvNeXt块的timm特定架构。所有归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT - 在MaxViT中使用ConvNeXt块的timm特定架构。所有归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2 - 删除窗口块的MaxxViT变体,仅保留ConvNeXt块和用于补偿的更宽的网格注意力。

除了上述主要变体之外,从模型到模型还有更细微的变化。任何带有字符串rw的模型名称是timm特定的配置,模型调整是为了支持PyTorch eager使用。这些模型是在进行训练的初期复现模型时创建的,因此存在一些变化。所有带有字符串tf的模型都是与原始论文作者基于Tensorflow的模型完全匹配,并将权重转移到PyTorch。这包括多个MaxViT模型。官方的CoAtNet模型从未发布。

模型详细信息

  • 模型类型:图像分类/特征主干
  • 模型统计信息:
    • 参数(M):29.1
    • GMACs:5.1
    • 激活数(M):33.1
    • 图像尺寸:224 x 224
  • 论文:
  • 数据集:ImageNet-1k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('maxvit_tiny_rw_224.sw_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_tiny_rw_224.sw_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 64, 56, 56])
    #  torch.Size([1, 128, 28, 28])
    #  torch.Size([1, 256, 14, 14])
    #  torch.Size([1, 512, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_tiny_rw_224.sw_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 512, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1

model top1 top5 samples / sec Params (M) GMAC Act (M)
1239321 88.53 98.64 21.76 475.77 534.14 1413.22
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12322321 86.52 97.88 36.04 212.33 244.75 942.15
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12351321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本/秒)

model top1 top5 samples / sec Params (M) GMAC Act (M)
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12351321 80.53 95.21 1594.71 7.52 1.85 24.86
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12322321 86.52 97.88 36.04 212.33 244.75 942.15
1239321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}