模型:

timm/maxvit_small_tf_512.in1k

英文

maxvit_small_tf_512.in1k 模型卡片

一种官方的 MaxViT 图像分类模型。由论文作者在 ImageNet-1k 数据集上使用 TensorFlow 训练得到。通过由 Ross Wightman 将官方 TensorFlow 实现( https://github.com/google-research/maxvit )移植到 PyTorch。

maxxvit.py 中的模型变体

MaxxViT 包含许多相关的模型架构,它们共享一个共同的结构,包括:

  • CoAtNet - 在早期阶段结合 MBConv(深度可分离)卷积块和后期的自注意力变换块。
  • MaxViT - 所有阶段均采用相同的块结构,每个块包含一个 MBConv(深度可分离)卷积块,后跟两个具有不同分区方案(窗口和网格)的自注意力块。
  • CoAtNeXt - 一种使用 ConvNeXt 块(而非 CoAtNet 中的 MBConv 块)的 Timm 特定架构。所有标准化层均为 LayerNorm(无 BatchNorm)。
  • MaxxViT - 一种使用 ConvNeXt 块(而非 MaxViT 中的 MBConv 块)的 Timm 特定架构。所有标准化层均为 LayerNorm(无 BatchNorm)。
  • MaxxViT-V2 - MaxxViT 的一种变体,去除了窗口块自注意力,只保留了 ConvNeXt 块和网格注意力,并且增加了更多的宽度以进行补偿。

除了上述主要变体外,从一种模型到另一种模型还存在一些细微的变化。任何带有字符串 rw 的模型名称均为 Timm 特定配置,其中模型调整以支持 PyTorch 的 eager 使用。这些模型是在进行初始模型复现时创建的,因此存在一些差异。所有带有字符串 tf 的模型均目前与原论文作者基于 TensorFlow 的模型完全匹配,并将权重迁移到了 PyTorch。这涵盖了许多 MaxViT 模型。官方的 CoAtNet 模型从未发布。

模型细节

  • 模型类型:图像分类 / 特征骨干
  • 模型统计数据:
    • 参数数量(百万):69.1
    • GMACs:67.3
    • 激活数量(百万):383.8
    • 图像尺寸:512 x 512
  • 论文:
  • 数据集:ImageNet-1k

模型用法

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('maxvit_small_tf_512.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_small_tf_512.in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 256, 256])
    #  torch.Size([1, 96, 128, 128])
    #  torch.Size([1, 192, 64, 64])
    #  torch.Size([1, 384, 32, 32])
    #  torch.Size([1, 768, 16, 16])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_small_tf_512.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 768, 16, 16) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按 Top-1 准确率

model top1 top5 samples / sec Params (M) GMAC Act (M)
1239321 88.53 98.64 21.76 475.77 534.14 1413.22
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12322321 86.52 97.88 36.04 212.33 244.75 942.15
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12351321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本 / 秒)

model top1 top5 samples / sec Params (M) GMAC Act (M)
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12351321 80.53 95.21 1594.71 7.52 1.85 24.86
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12322321 86.52 97.88 36.04 212.33 244.75 942.15
1239321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}