模型:

timm/maxvit_base_tf_224.in1k

英文

maxvit_base_tf_224.in1k的模型卡片

官方的MaxViT图像分类模型。由论文作者在ImageNet-1k上使用tensorflow训练。由Ross Wightman将官方的Tensorflow实现( https://github.com/google-research/maxvit )移植到PyTorch。

maxxvit.py 中的模型变体

MaxxViT涵盖了一系列相关的模型架构,它们共享一个共同的结构,包括:

  • CoAtNet - 在早期阶段使用MBConv(深度可分离)卷积块,后续阶段使用自注意力变换块。
  • MaxViT - 所有阶段均使用统一的块,每个块包含一个MBConv(深度可分离)卷积块,后面是两个具有不同分区方案(窗口和网格)的自注意力块。
  • CoAtNeXt - 一种timm特定的架构,它在CoAtNet中使用ConvNeXt块代替MBConv块。所有的归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT - 一种timm特定的架构,它在MaxViT中使用ConvNeXt块代替MBConv块。所有的归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2 - MaxxViT的变体,移除了窗口块的自注意力,只保留了ConvNeXt块和带有更大宽度的网格注意力以进行补偿。

除了上述主要变体外,从模型到模型之间还存在更细微的变化。任何带有字符串rw的模型名称都是timm特定的配置,其中进行了模型调整以支持PyTorch。这些是在训练初始复现模型时创建的,因此有一些变化。所有带有字符串tf的模型都是与原始论文作者基于Tensorflow的模型完全匹配,并将权重移植到了PyTorch。这包括了很多MaxViT模型。官方的CoAtNet模型从未发布过。

模型详细信息

  • 模型类型:图像分类/特征主干
  • 模型统计数据:
    • 参数(M):119.5
    • GMACs:24.0
    • 激活数(M):95.0
    • 图像大小:224 x 224
  • 论文:
  • 数据集:ImageNet-1k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('maxvit_base_tf_224.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_base_tf_224.in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 384, 14, 14])
    #  torch.Size([1, 768, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxvit_base_tf_224.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 768, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1指标

model top1 top5 samples / sec Params (M) GMAC Act (M)
1239321 88.53 98.64 21.76 475.77 534.14 1413.22
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12322321 86.52 97.88 36.04 212.33 244.75 942.15
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12351321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(每秒样本数)

model top1 top5 samples / sec Params (M) GMAC Act (M)
12349321 81.95 95.92 2525.52 14.70 2.47 12.80
12350321 81.70 95.64 2344.52 15.14 2.41 15.41
12348321 82.05 95.87 2109.09 15.15 2.62 20.34
12347321 82.39 95.84 1831.21 27.44 4.43 18.73
12346321 82.39 96.19 1600.14 27.44 4.67 22.04
12351321 80.53 95.21 1594.71 7.52 1.85 24.86
12343321 83.03 96.34 1341.24 16.78 4.37 26.05
12344321 82.96 96.26 1283.24 15.50 4.47 31.92
12342321 83.11 96.33 1276.88 23.70 6.26 23.05
12345321 82.93 96.23 1218.17 15.45 4.46 30.28
12339321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.36 96.45 1093.03 41.69 7.85 35.47
12331321 84.90 96.96 1025.45 41.72 8.11 40.13
12340321 83.41 96.59 1004.94 30.92 5.60 35.78
12338321 83.62 96.38 989.59 41.72 8.04 34.60
12337321 84.23 96.78 807.21 29.15 6.77 46.92
12335321 84.49 96.76 693.82 64.90 10.75 49.30
12336321 84.43 96.83 647.96 68.93 11.66 53.17
12321321 86.57 97.89 631.88 73.87 15.09 49.22
12334321 84.61 96.74 625.81 73.88 15.18 54.78
12323321 86.49 97.90 620.58 73.88 15.18 54.78
12333321 84.63 97.06 575.53 66.01 14.67 58.38
12319321 86.64 98.02 501.03 116.09 24.20 62.77
12318321 86.89 98.02 375.86 116.14 23.15 92.64
12332321 84.85 96.99 358.25 119.47 24.04 95.01
12329321 85.11 97.38 293.46 30.98 17.53 123.42
12330321 84.93 96.97 247.71 211.79 43.68 127.35
12328321 85.54 97.46 188.35 69.02 35.87 183.65
12317321 87.39 98.31 160.80 73.88 47.69 209.43
12316321 87.47 98.37 149.49 116.09 72.98 213.74
12327321 85.67 97.58 144.25 31.05 33.49 257.59
12315321 87.81 98.37 106.55 116.14 70.97 318.95
12314321 87.92 98.54 104.71 119.65 73.80 332.90
12324321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.10 97.76 88.63 69.13 67.26 383.77
12313321 87.98 98.56 71.75 212.03 132.55 445.84
12325321 86.23 97.69 70.56 212.03 132.55 445.84
12311321 88.20 98.53 50.87 119.88 138.02 703.99
12320321 86.60 97.92 50.75 119.88 138.02 703.99
12310321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.04 98.40 36.42 212.33 244.75 942.15
12322321 86.52 97.88 36.04 212.33 244.75 942.15
1239321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}