模型:
timm/levit_conv_128.fb_dist_in1k
一种使用默认线性模式(nn.Linear 和 nn.BatchNorm1d)的 LeViT 图像分类模型。使用论文作者通过知识蒸馏在 ImageNet-1k 数据集上进行预训练。
from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('levit_conv_128.fb_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'levit_conv_128.fb_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor
from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'levit_conv_128.fb_dist_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for levit_conv_256: # torch.Size([2, 256, 14, 14]) # torch.Size([2, 384, 7, 7]) # torch.Size([2, 512, 4, 4]) print(o.shape)
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
levit_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_conv_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_192.fb_dist_in1k | 79.86 | 94.792 | 10.95 | 224 |
levit_192.fb_dist_in1k | 79.858 | 94.792 | 10.95 | 224 |
levit_128.fb_dist_in1k | 78.474 | 94.014 | 9.21 | 224 |
levit_conv_128.fb_dist_in1k | 78.474 | 94.02 | 9.21 | 224 |
levit_128s.fb_dist_in1k | 76.534 | 92.864 | 7.78 | 224 |
levit_conv_128s.fb_dist_in1k | 76.532 | 92.864 | 7.78 | 224 |
@InProceedings{Graham_2021_ICCV, author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs}, title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {12259-12269} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} }