模型:
timm/inception_v3.tf_adv_in1k
任务:
许可:
一个Inception-v3图像分类模型。由论文作者在ImageNet-1k上进行对抗训练并由Ross Wightman进行移植到Tensorflow。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('inception_v3.tf_adv_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tf_adv_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 147, 147]) # torch.Size([1, 192, 71, 71]) # torch.Size([1, 288, 35, 35]) # torch.Size([1, 768, 17, 17]) # torch.Size([1, 2048, 8, 8]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tf_adv_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm中探索该模型的数据集和运行时指标 model results
@article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
@article{Kurakin2018AdversarialAA, title={Adversarial Attacks and Defences Competition}, author={Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan Loddon Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, journal={ArXiv}, year={2018}, volume={abs/1804.00097} }