模型:

timm/coatnet_rmlp_nano_rw_224.sw_in1k

英文

coatnet_rmlp_nano_rw_224.sw_in1k模型卡片

这是一个特定于timm的CoAtNet模型(采用Swin-V2激发的MLP Log-CPB(连续对数坐标相对位置偏差)的图像分类模型)。由Ross Wightman在ImageNet-1k上使用timm进行训练。

感谢 TRC 计划的支持,ImageNet-1k的训练是在TPU上完成的。

maxxvit.py 中的模型变体

MaxxViT涵盖了许多相关的模型架构,它们共享一个共同结构,包括:

  • CoAtNet - 在早期阶段将MBConv(深度可分离)卷积块与后期的自注意力变换块相结合。
  • MaxViT - 所有阶段都使用相同的块,每个块包含一个MBConv(深度可分离)卷积块,后面跟随两个具有不同分区方案(窗口和网格)的自注意块。
  • CoAtNeXt - 一种timm特定的架构,它在CoAtNet中使用ConvNeXt块而不是MBConv块。所有归一化层都是LayerNorm层(没有BatchNorm)。
  • MaxxViT - 一种timm特定的架构,它在MaxViT中使用ConvNeXt块而不是MBConv块。所有归一化层都是LayerNorm层(没有BatchNorm)。
  • MaxxViT-V2 - MaxxViT的一个变种,它去除了窗口块自注意力,仅保留ConvNeXt块和具有更大宽度的网格注意力来弥补。

除了上述主要变体之外,从一个模型到另一个模型还有一些微小的变化。任何包含字符串“rw”的模型名称都是timm特定的配置,进行了调整以适应PyTorch的即时执行。这些模型是在训练初始版本时创建的,因此存在变异。“tf”字符串的所有模型都与原始论文作者基于Tensorflow的模型完全匹配,并将权重移植到PyTorch中。这包括许多MaxViT模型。官方的CoAtNet模型从未发布过。

模型详细信息

  • 模型类型:图像分类/特征骨干
  • 模型统计信息:
    • 参数数目(M):15.1
    • GMACs:2.6
    • 激活数目(M):20.3
    • 图像大小:224 x 224
  • 论文:
  • 数据集:ImageNet-1k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('coatnet_rmlp_nano_rw_224.sw_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_nano_rw_224.sw_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 64, 56, 56])
    #  torch.Size([1, 128, 28, 28])
    #  torch.Size([1, 256, 14, 14])
    #  torch.Size([1, 512, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_nano_rw_224.sw_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 512, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1排序

model top1 top5 samples / sec Params (M) GMAC Act (M)
12310321 88.53 98.64 21.76 475.77 534.14 1413.22
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12352321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本/秒)排序

model top1 top5 samples / sec Params (M) GMAC Act (M)
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12352321 80.53 95.21 1594.71 7.52 1.85 24.86
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12310321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}