英文

coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k的模型卡片

这是一个特定于timm的CoAtNet模型(带有MLP Log-CPB,根据Swin-V2的连续对数坐标相对位置偏差进行调整的图像分类模型)。在ImageNet-12k(全ImageNet-22k的11821个类别子集)上由Ross Wightman在timm上进行了预训练,并在ImageNet-1k上进行了微调。

ImageNet-12k的训练是在TPU上进行的,感谢支持该计划的 TRC 项目。

微调是在8个GPU的 Lambda Labs 云实例上完成的。

maxxvit.py 中的模型变种

MaxxViT涵盖了一系列相关的模型架构,它们共享一个共同的结构,包括:

  • CoAtNet - 在早期阶段将MBConv(深度可分离)卷积块与后期的自注意力变换块相结合。
  • MaxViT - 在所有阶段中均使用统一的块,每个块包含一个MBConv(深度可分离)卷积块,后面跟随两个具有不同分区方案的自注意力块(窗口和网格)。
  • CoAtNeXt - 这是一个timm特定的架构,它在CoAtNet中使用ConvNeXt块,而不是MBConv块。所有归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT - 这是一个timm特定的架构,它在MaxViT中使用ConvNeXt块,而不是MBConv块。所有归一化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2 - 这是一种MaxxViT的变体,它删除了窗口块注意力,只留下ConvNeXt块和具有更大宽度的网格注意力来进行补偿。

除了以上列出的主要变体外,模型之间还有一些细微的差异。所有带有字符串rw的模型名称是timm特定的配置,其中对模型进行了调整,以适应PyTorch eager使用。这些模型是在训练初始的模型重现时创建的,因此会有一些差异。所有带有字符串tf的模型与原始论文作者基于Tensorflow创建的模型完全匹配,并将权重转换为PyTorch。这涵盖了许多MaxViT模型。正式发布的CoAtNet模型从未发布过。

模型细节

  • 模型类型:图像分类/特征骨干
  • 模型统计数据:
    • 参数数目(M):41.7
    • GMACs:8.1
    • 激活数目(M):40.1
    • 图像尺寸:224 x 224
  • 论文:
  • 数据集: ImageNet-1k
  • 预训练数据集: ImageNet-12k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 384, 14, 14])
    #  torch.Size([1, 768, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 768, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1指标

model top1 top5 samples / sec Params (M) GMAC Act (M)
12311321 88.53 98.64 21.76 475.77 534.14 1413.22
12312321 88.32 98.54 42.53 475.32 292.78 668.76
12313321 88.20 98.53 50.87 119.88 138.02 703.99
12314321 88.04 98.40 36.42 212.33 244.75 942.15
12315321 87.98 98.56 71.75 212.03 132.55 445.84
12316321 87.92 98.54 104.71 119.65 73.80 332.90
12317321 87.81 98.37 106.55 116.14 70.97 318.95
12318321 87.47 98.37 149.49 116.09 72.98 213.74
12319321 87.39 98.31 160.80 73.88 47.69 209.43
12320321 86.89 98.02 375.86 116.14 23.15 92.64
12321321 86.64 98.02 501.03 116.09 24.20 62.77
12322321 86.60 97.92 50.75 119.88 138.02 703.99
12323321 86.57 97.89 631.88 73.87 15.09 49.22
12324321 86.52 97.88 36.04 212.33 244.75 942.15
12325321 86.49 97.90 620.58 73.88 15.18 54.78
12326321 86.29 97.80 101.09 119.65 73.80 332.90
12327321 86.23 97.69 70.56 212.03 132.55 445.84
12328321 86.10 97.76 88.63 69.13 67.26 383.77
12329321 85.67 97.58 144.25 31.05 33.49 257.59
12330321 85.54 97.46 188.35 69.02 35.87 183.65
12331321 85.11 97.38 293.46 30.98 17.53 123.42
12332321 84.93 96.97 247.71 211.79 43.68 127.35
12333321 84.90 96.96 1025.45 41.72 8.11 40.13
12334321 84.85 96.99 358.25 119.47 24.04 95.01
12335321 84.63 97.06 575.53 66.01 14.67 58.38
12336321 84.61 96.74 625.81 73.88 15.18 54.78
12337321 84.49 96.76 693.82 64.90 10.75 49.30
12338321 84.43 96.83 647.96 68.93 11.66 53.17
12339321 84.23 96.78 807.21 29.15 6.77 46.92
12340321 83.62 96.38 989.59 41.72 8.04 34.60
12341321 83.50 96.50 1100.53 29.06 5.11 33.11
12342321 83.41 96.59 1004.94 30.92 5.60 35.78
12343321 83.36 96.45 1093.03 41.69 7.85 35.47
12344321 83.11 96.33 1276.88 23.70 6.26 23.05
12345321 83.03 96.34 1341.24 16.78 4.37 26.05
12346321 82.96 96.26 1283.24 15.50 4.47 31.92
12347321 82.93 96.23 1218.17 15.45 4.46 30.28
12348321 82.39 96.19 1600.14 27.44 4.67 22.04
12349321 82.39 95.84 1831.21 27.44 4.43 18.73
12350321 82.05 95.87 2109.09 15.15 2.62 20.34
12351321 81.95 95.92 2525.52 14.70 2.47 12.80
12352321 81.70 95.64 2344.52 15.14 2.41 15.41
12353321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(每秒样本数)

model top1 top5 samples / sec Params (M) GMAC Act (M)
12351321 81.95 95.92 2525.52 14.70 2.47 12.80
12352321 81.70 95.64 2344.52 15.14 2.41 15.41
12350321 82.05 95.87 2109.09 15.15 2.62 20.34
12349321 82.39 95.84 1831.21 27.44 4.43 18.73
12348321 82.39 96.19 1600.14 27.44 4.67 22.04
12353321 80.53 95.21 1594.71 7.52 1.85 24.86
12345321 83.03 96.34 1341.24 16.78 4.37 26.05
12346321 82.96 96.26 1283.24 15.50 4.47 31.92
12344321 83.11 96.33 1276.88 23.70 6.26 23.05
12347321 82.93 96.23 1218.17 15.45 4.46 30.28
12341321 83.50 96.50 1100.53 29.06 5.11 33.11
12343321 83.36 96.45 1093.03 41.69 7.85 35.47
12333321 84.90 96.96 1025.45 41.72 8.11 40.13
12342321 83.41 96.59 1004.94 30.92 5.60 35.78
12340321 83.62 96.38 989.59 41.72 8.04 34.60
12339321 84.23 96.78 807.21 29.15 6.77 46.92
12337321 84.49 96.76 693.82 64.90 10.75 49.30
12338321 84.43 96.83 647.96 68.93 11.66 53.17
12323321 86.57 97.89 631.88 73.87 15.09 49.22
12336321 84.61 96.74 625.81 73.88 15.18 54.78
12325321 86.49 97.90 620.58 73.88 15.18 54.78
12335321 84.63 97.06 575.53 66.01 14.67 58.38
12321321 86.64 98.02 501.03 116.09 24.20 62.77
12320321 86.89 98.02 375.86 116.14 23.15 92.64
12334321 84.85 96.99 358.25 119.47 24.04 95.01
12331321 85.11 97.38 293.46 30.98 17.53 123.42
12332321 84.93 96.97 247.71 211.79 43.68 127.35
12330321 85.54 97.46 188.35 69.02 35.87 183.65
12319321 87.39 98.31 160.80 73.88 47.69 209.43
12318321 87.47 98.37 149.49 116.09 72.98 213.74
12329321 85.67 97.58 144.25 31.05 33.49 257.59
12317321 87.81 98.37 106.55 116.14 70.97 318.95
12316321 87.92 98.54 104.71 119.65 73.80 332.90
12326321 86.29 97.80 101.09 119.65 73.80 332.90
12328321 86.10 97.76 88.63 69.13 67.26 383.77
12315321 87.98 98.56 71.75 212.03 132.55 445.84
12327321 86.23 97.69 70.56 212.03 132.55 445.84
12313321 88.20 98.53 50.87 119.88 138.02 703.99
12322321 86.60 97.92 50.75 119.88 138.02 703.99
12312321 88.32 98.54 42.53 475.32 292.78 668.76
12314321 88.04 98.40 36.42 212.33 244.75 942.15
12324321 86.52 97.88 36.04 212.33 244.75 942.15
12311321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}