模型:
timm/botnet26t_256.c1_in1k
任务:
许可:
一个基于ResNet架构的BotNet图像分类模型,由Ross Wightman在timm中使用ImageNet-1k进行训练。
注意:该模型没有遵循任何特定的论文配置,它被调整为合理的训练时间和降低自注意块的频率。
配方详情:
该模型架构是使用timm的灵活的 BYOBNet (Bring-Your-Own-Blocks Network) 实现的。
BYOB(具有BYOANet自注意力特定模块)允许配置如下:
...同时还包括timm中许多其他架构共有的特性,包括:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('botnet26t_256.c1_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'botnet26t_256.c1_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 128, 128]) # torch.Size([1, 256, 64, 64]) # torch.Size([1, 512, 32, 32]) # torch.Size([1, 1024, 16, 16]) # torch.Size([1, 2048, 8, 8]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'botnet26t_256.c1_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm的 model results 中探索该模型的数据集和运行时指标。
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }
@article{Srinivas2021BottleneckTF, title={Bottleneck Transformers for Visual Recognition}, author={A. Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and P. Abbeel and Ashish Vaswani}, journal={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2021}, pages={16514-16524} }
@inproceedings{wightman2021resnet, title={ResNet strikes back: An improved training procedure in timm}, author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} }