模型:
superb/wav2vec2-base-superb-ic
这是 S3PRL's Wav2Vec2 for the SUPERB Intent Classification task 的一个移植版本。
基础模型是 wav2vec2-base ,它是在16kHz采样的语音音频上进行预训练的。使用该模型时,请确保您的语音输入也是以16kHz采样的。
有关更多信息,请参阅 SUPERB: Speech processing Universal PERformance Benchmark 。
意图分类(IC)将话语划分为预定义的类别,以确定说话人的意图。SUPERB使用了 Fluent Speech Commands 数据集,其中每个话语都标有三个意图标签:行动(action)、对象(object)和位置(location)。
有关原始模型的训练和评估说明,请参阅 S3PRL downstream task README 。
您可以直接使用模型,如下所示:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ic", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
action_labels = [model.config.id2label[_id] for _id in action_ids]
object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist()
object_labels = [model.config.id2label[_id + 6] for _id in object_ids]
location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist()
location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
评估指标是准确度。
| s3prl | transformers | |
|---|---|---|
| test | 0.9235 | N/A |
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}