模型:
sentence-transformers/roberta-large-nli-stsb-mean-tokens
⚠️ 这个模型已经过时,请不要使用,因为它生成的句子嵌入质量较低。您可以在这里找到推荐的句子嵌入模型: SBERT.net - Pretrained Models
这是一个 sentence-transformers 模型:它将句子和段落映射到一个1024维的稠密向量空间,可用于聚类或语义搜索等任务。
当您安装了 sentence-transformers 后,使用这个模型变得很容易:
pip install -U sentence-transformers
然后您可以像这样使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
embeddings = model.encode(sentences)
print(embeddings)
 如果没有安装 sentence-transformers ,可以像这样使用模型:首先,将输入通过变换器模型,然后必须在上下文词嵌入之上应用正确的汇聚操作。
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
model = AutoModel.from_pretrained('sentence-transformers/roberta-large-nli-stsb-mean-tokens')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
 要对此模型进行自动评估,请参阅 Sentence Embeddings Benchmark : https://seb.sbert.net
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
 该模型由 sentence-transformers 训练。
如果您发现这个模型有帮助,请随意引用我们的出版物 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks :
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}