模型:
sb3/ppo_lstm-MountainCarContinuousNoVel-v0
这是一个经过训练的 RecurrentPPO 代理在 MountainCarContinuousNoVel-v0 游戏中的表现,使用了 stable-baselines3 library 和 RL Zoo 的模型。
RL Zoo 是一个训练框架,用于稳定的 Baselines3 强化学习代理的训练,包括了超参数优化和预训练代理。
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo_lstm --env MountainCarContinuousNoVel-v0 -orga sb3 -f logs/ python enjoy.py --algo ppo_lstm --env MountainCarContinuousNoVel-v0 -f logs/
python train.py --algo ppo_lstm --env MountainCarContinuousNoVel-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo_lstm --env MountainCarContinuousNoVel-v0 -f logs/ -orga sb3
OrderedDict([('batch_size', 256),
('clip_range', 0.1),
('ent_coef', 0.00429),
('gae_lambda', 0.9),
('gamma', 0.9999),
('learning_rate', 7.77e-05),
('max_grad_norm', 5),
('n_envs', 8),
('n_epochs', 10),
('n_steps', 1024),
('n_timesteps', 300000.0),
('normalize', True),
('policy', 'MlpLstmPolicy'),
('policy_kwargs',
'dict(log_std_init=0.0, ortho_init=False, lstm_hidden_size=32, '
'enable_critic_lstm=True, net_arch=[dict(pi=[64], vf=[64])])'),
('sde_sample_freq', 8),
('use_sde', True),
('vf_coef', 0.19),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])