本仓库提供一个包含36亿个参数的日本语GPT-NeoX模型。该模型基于 rinna/japanese-gpt-neox-3.6b 构建,并通过微调用于指令跟随对话代理。
该模型与之前的SFT模型 rinna/japanese-gpt-neox-3.6b-instruction-sft 略有不同,使用了不同的数据分割进行了训练。
模型架构
一个包含36层、2816隐藏单元的基于Transformer的语言模型。
SFT与之前的SFT评估
我们对100个提示进行了基于ChatGPT的自动化评估,以评估此SFT模型和之前的SFT模型之间的性能差异。
| 1237321 vs. 1238321 | win | tie | loss |
|---|---|---|---|
| ChatGPT auto. evaluation | 55 % | 0% | 45% |
微调
微调数据是以下数据集的子集,并已翻译成日语。
将不会发布这些数据。
模型系列
| Variant | Link |
|---|---|
| 3.6B PPO | 12312321 |
| 3.6B SFT-v2 | 12313321 |
| 3.6B SFT | 12314321 |
| 3.6B pretrained | 12315321 |
作者
采用了一种特殊格式来构建输入。
以下是根据对话构建输入的示例。
prompt = [
{
"speaker": "ユーザー",
"text": "コンタクトレンズを慣れるにはどうすればよいですか?"
},
{
"speaker": "システム",
"text": "これについて具体的に説明していただけますか?何が難しいのでしょうか?"
},
{
"speaker": "ユーザー",
"text": "目が痛いのです。"
},
{
"speaker": "システム",
"text": "分かりました、コンタクトレンズをつけると目がかゆくなるということですね。思った以上にレンズを外す必要があるでしょうか?"
},
{
"speaker": "ユーザー",
"text": "いえ、レンズは外しませんが、目が赤くなるんです。"
}
]
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in prompt
]
prompt = "<NL>".join(prompt)
prompt = (
prompt
+ "<NL>"
+ "システム: "
)
print(prompt)
# "ユーザー: コンタクトレンズを慣れるにはどうすればよいですか?<NL>システム: これについて具体的に説明していただけますか?何が難しいのでしょうか?<NL>ユーザー: 目が痛いのです。<NL>システム: 分かりました、コンタクトレンズをつけると目がかゆくなるということですね。思った以上にレンズを外す必要があるでしょうか?<NL>ユーザー: いえ、レンズは外しませんが、目が赤くなるんです。<NL>システム: "
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft-v2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft-v2")
if torch.cuda.is_available():
model = model.to("cuda")
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
max_new_tokens=128,
temperature=0.7,
repetition_penalty=1.1,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
output = output.replace("<NL>", "\n")
print(output)
"""わかりました。まずは、コンタクトレンズを長時間着用することによる目の乾燥を防ぐことができます。また、毎日同じ時間帯にコンタクトレンズを着用してみることもできます。そして、コンタクトレンズが目に合わないような場合は、新しいものを試してみる必要があります。</s>"""
该模型使用基于 sentencepiece 的分词器。
print(tokenizer.tokenize("吾輩は猫である"))
# ['吾', '輩', 'は', '猫', 'である']
# instead of ['▁', '吾', '輩', 'は', '猫', 'である'] as in rinna/japanese-gpt-1b
print(tokenizer.tokenize(" 吾輩は 猫である "))
# ['▁', '▁', '吾', '輩', 'は', '▁', '▁', '猫', 'である', '▁', '▁', '▁']
# instead of ['▁', '吾', '輩', 'は', '▁猫', 'である'] as in rinna/japanese-gpt-1b
good_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b", use_fast=False)
bad_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b")
print(good_tokenizer.decode(good_tokenizer.encode("გამარჯობა 吾輩は 猫である ")))
# 'გამარჯობა 吾輩は 猫である </s>'
print(bad_tokenizer.decode(bad_tokenizer.encode("გამარჯობა 吾輩は 猫である ")))
# 'გამარ[UNK]ობა 吾輩は 猫である </s>'