模型:
readerbench/RoBERT-base
其他:
bertRoBERT-base模型概述
语言:
使用掩码语言建模(MLM)和下一句预测(NSP)目标在罗马尼亚语上进行预训练的模型。它是在这个 paper 中引入的。发布了三个BERT模型:RoBERT-small、RoBERT-base和RoBERT-large,所有版本都是不区分大小写的。
| Model | Weights | L | H | A | MLM accuracy | NSP accuracy |
|---|---|---|---|---|---|---|
| RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 |
| RoBERT-base | 114M | 12 | 768 | 12 | 0.6511 | 0.9802 |
| RoBERT-large | 341M | 24 | 1024 | 24 | 0.6929 | 0.9843 |
所有模型都可用:
如何使用# tensorflow
from transformers import AutoModel, AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
model = TFAutoModel.from_pretrained("readerbench/RoBERT-base")
inputs = tokenizer("exemplu de propoziție", return_tensors="tf")
outputs = model(inputs)
# pytorch
from transformers import AutoModel, AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
model = AutoModel.from_pretrained("readerbench/RoBERT-base")
inputs = tokenizer("exemplu de propoziție", return_tensors="pt")
outputs = model(**inputs)
模型使用以下语料库的组合进行训练。请注意,我们在进行清理处理后呈现统计信息。
| Corpus | Words | Sentences | Size (GB) |
|---|---|---|---|
| Oscar | 1.78B | 87M | 10.8 |
| RoTex | 240M | 14M | 1.5 |
| RoWiki | 50M | 2M | 0.3 |
| Total | 2.07B | 103M | 12.6 |
我们报告宏平均F1得分(以%表示)
| Model | Dev | Test |
|---|---|---|
| multilingual-BERT | 68.96 | 69.57 |
| XLM-R-base | 71.26 | 71.71 |
| BERT-base-ro | 70.49 | 71.02 |
| RoBERT-small | 66.32 | 66.37 |
| RoBERT-base | 70.89 | 71.61 |
| RoBERT-large | 72.48 | 72.11 |
我们报告了 VarDial 2019 摩尔多瓦语和罗马尼亚语方言识别挑战的结果,宏平均F1得分(以%表示)。
| Model | Dialect Classification | MD to RO | RO to MD |
|---|---|---|---|
| 2-CNN + SVM | 93.40 | 65.09 | 75.21 |
| Char+Word SVM | 96.20 | 69.08 | 81.93 |
| BiGRU | 93.30 | 70.10 | 80.30 |
| multilingual-BERT | 95.34 | 68.76 | 78.24 |
| XLM-R-base | 96.28 | 69.93 | 82.28 |
| BERT-base-ro | 96.20 | 69.93 | 78.79 |
| RoBERT-small | 95.67 | 69.01 | 80.40 |
| RoBERT-base | 97.39 | 68.30 | 81.09 |
| RoBERT-large | 97.78 | 69.91 | 83.65 |
挑战详见 here 。我们报告了官方测试集上的准确度(以%表示)。
| Model | word level | char level |
|---|---|---|
| BiLSTM | 99.42 | - |
| CharCNN | 98.40 | 99.65 |
| CharCNN + multilingual-BERT | 99.72 | 99.94 |
| CharCNN + XLM-R-base | 99.76 | 99.95 |
| CharCNN + BERT-base-ro | 99.79 | 99.95 |
| CharCNN + RoBERT-small | 99.73 | 99.94 |
| CharCNN + RoBERT-base | 99.78 | 99.95 |
| CharCNN + RoBERT-large | 99.76 | 99.95 |
@inproceedings{masala2020robert,
title={RoBERT--A Romanian BERT Model},
author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai},
booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
pages={6626--6637},
year={2020}
}