模型:
pedramyazdipoor/persian_xlm_roberta_large
任务:
XLM-RoBERTA是在2.5TB的经过过滤的CommonCrawl数据上进行预训练的多语言语言模型,包含100种语言。它在Conneau等人的论文 Unsupervised Cross-lingual Representation Learning at Scale 中被介绍。
多语言模型 XLM-RoBERTa large for QA on various languages 在各种问答数据集上进行了微调,但尚未在迄今为止最大的波斯问答数据集PQuAD上进行微调。这个第二个模型是我们的基础模型,用于进行微调。
PQuAD数据集的论文介绍: arXiv:2202.06219
该模型在PQuAD训练集上进行了微调,并且非常容易使用。由于训练时间非常长,我决定将这个模型发布出来,以便为需要的人们提供便利。
由于Google Colab的GPU内存限制,我将批大小设置为4。
batch_size = 4 n_epochs = 1 base_LM_model = "deepset/xlm-roberta-large-squad2" max_seq_len = 256 learning_rate = 3e-5 evaluation_strategy = "epoch", save_strategy = "epoch", learning_rate = 3e-5, warmup_ratio = 0.1, gradient_accumulation_steps = 8, weight_decay = 0.01,
在PQuAD波斯测试集上进行评估,得到了 official PQuAD link 的结果。我也进行了超过1个epochs的训练,但结果变得更差了。我们的XLM-Roberta表现优于 our ParsBert on PQuAD ,但前者的大小是后者的3倍多,所以比较这两者是不公平的。
| Metric | Our XLM-Roberta Large | Our ParsBert |
|---|---|---|
| Exact Match | 66.56* | 47.44 |
| F1 | 87.31* | 81.96 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering path = 'pedramyazdipoor/persian_xlm_roberta_large' tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForQuestionAnswering.from_pretrained(path)
在推理过程中要注意以下几点:
def generate_indexes(start_logits, end_logits, N, min_index):
output_start = start_logits
output_end = end_logits
start_indexes = np.arange(len(start_logits))
start_probs = output_start
list_start = dict(zip(start_indexes, start_probs.tolist()))
end_indexes = np.arange(len(end_logits))
end_probs = output_end
list_end = dict(zip(end_indexes, end_probs.tolist()))
sorted_start_list = sorted(list_start.items(), key=lambda x: x[1], reverse=True) #Descending sort by probability
sorted_end_list = sorted(list_end.items(), key=lambda x: x[1], reverse=True)
final_start_idx, final_end_idx = [[] for l in range(2)]
start_idx, end_idx, prob = 0, 0, (start_probs.tolist()[0] + end_probs.tolist()[0])
for a in range(0,N):
for b in range(0,N):
if (sorted_start_list[a][1] + sorted_end_list[b][1]) > prob :
if (sorted_start_list[a][0] <= sorted_end_list[b][0]) and (sorted_start_list[a][0] > min_index) :
prob = sorted_start_list[a][1] + sorted_end_list[b][1]
start_idx = sorted_start_list[a][0]
end_idx = sorted_end_list[b][0]
final_start_idx.append(start_idx)
final_end_idx.append(end_idx)
return final_start_idx[0], final_end_idx[0]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.eval().to(device)
text = 'سلام من پدرامم 26 سالمه'
question = 'چند سالمه؟'
encoding = tokenizer(question,text,add_special_tokens = True,
return_token_type_ids = True,
return_tensors = 'pt',
padding = True,
return_offsets_mapping = True,
truncation = 'only_first',
max_length = 32)
out = model(encoding['input_ids'].to(device),encoding['attention_mask'].to(device), encoding['token_type_ids'].to(device))
#we had to change some pieces of code to make it compatible with one answer generation at a time
#If you have unanswerable questions, use out['start_logits'][0][0:] and out['end_logits'][0][0:] because <s> (the 1st token) is for this situation and must be compared with other tokens.
#you can initialize min_index in generate_indexes() to put force on tokens being chosen to be within the context(startindex must be greater than seperator token).
answer_start_index, answer_end_index = generate_indexes(out['start_logits'][0][1:], out['end_logits'][0][1:], 5, 0)
print(tokenizer.tokenize(text + question))
print(tokenizer.tokenize(text + question)[answer_start_index : (answer_end_index + 1)])
>>> ['▁سلام', '▁من', '▁پدر', 'ام', 'م', '▁26', '▁سالم', 'ه', 'نام', 'م', '▁چیست', '؟']
>>> ['▁26']
我们在此感谢 Newsha Shahbodaghkhan 为收集数据集提供便利。
这是我们波斯XLM-Roberta-Large的第二个版本。使用之前的版本出现了一些问题。