模型:
nvidia/segformer-b0-finetuned-ade-512-512
SegFormer模型在分辨率为512x512的ADE20k数据集上进行了微调。该模型由Xie等人在论文 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers 中介绍,并于 this repository 首次发布。
免责声明:发布SegFormer的团队未针对此模型撰写模型卡片,因此该模型卡片由Hugging Face团队撰写。
SegFormer由分层Transformer编码器和轻量级全MLP解码头组成,在ADE20K和Cityscapes等语义分割基准测试中取得了很好的效果。分层Transformer首先在ImageNet-1k上进行预训练,然后添加解码头并联合在下游数据集上进行微调。
您可以使用原始模型进行语义分割。查看 model hub 以查找您感兴趣的任务的微调版本。
使用此模型对COCO 2017数据集的图像进行分类为其中一个1,000个ImageNet类的示例代码如下:
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
import requests
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
更多代码示例,请参阅 documentation 。
此模型的许可证可以在 here 中找到。
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}