模型:
mrm8488/spanbert-finetuned-squadv2
由 Facebook Research 创建,并在 SQuAD 2.0 上进行Q&A任务的微调。
SpanBERT: Improving Pre-training by Representing and Predicting Spans
SQuAD2.0 将SQuAD1.1中的100,000个问题与由众包工人以类似可回答问题的方式编写的50,000多个无法回答的问题相结合。要在SQuAD2.0上取得好成绩,系统不仅必须在可能时回答问题,还必须确定段落不支持任何答案并且放弃回答。
| Dataset | Split | # samples |
|---|---|---|
| SQuAD2.0 | train | 130k |
| SQuAD2.0 | eval | 12.3k |
该模型在Tesla P100 GPU和25GB RAM上进行了训练。微调的脚本可以在 here 找到。
| Metric | # Value |
|---|---|
| EM | 78.80 |
| F1 | 82.22 |
{
"exact": 78.80064010780762,
"f1": 82.22801347271162,
"total": 11873,
"HasAns_exact": 78.74493927125506,
"HasAns_f1": 85.60951483831069,
"HasAns_total": 5928,
"NoAns_exact": 78.85618166526493,
"NoAns_f1": 78.85618166526493,
"NoAns_total": 5945,
"best_exact": 78.80064010780762,
"best_exact_thresh": 0.0,
"best_f1": 82.2280134727116,
"best_f1_thresh": 0.0
}
| Model | EM | F1 score |
|---|---|---|
| 1238321 | - | 83.6* |
| 1239321 | 78.80 | 82.22 |
使用pipelines快速使用:
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="mrm8488/spanbert-finetuned-squadv2",
tokenizer="mrm8488/spanbert-finetuned-squadv2"
)
qa_pipeline({
'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately",
'question': "Who has been working hard for hugginface/transformers lately?"
})
# Output: {'answer': 'Manuel Romero','end': 13,'score': 6.836378586818937e-09, 'start': 0}
在西班牙用 ♥ 制作