模型:
mrm8488/spanbert-finetuned-squadv1
由 Facebook Research 创建,并针对Q&A下游任务在 SQuAD 1.1 上进行了微调。
这是一种预训练方法,旨在更好地表示和预测文本片段。
SpanBERT: Improving Pre-training by Representing and Predicting Spans
SQuAD 1.1 包含500多篇文章上的100,000个问题-答案对。
| Dataset | Split | # samples |
|---|---|---|
| SQuAD1.1 | train | 87.7k |
| SQuAD1.1 | eval | 10.6k |
该模型在Tesla P100 GPU和25GB RAM上进行了训练。有关微调的脚本可以在 here 中找到
| Metric | # Value |
|---|---|
| EM | 85.49 |
| F1 | 91.98 |
{
"exact": 85.49668874172185,
"f1": 91.9845699540379,
"total": 10570,
"HasAns_exact": 85.49668874172185,
"HasAns_f1": 91.9845699540379,
"HasAns_total": 10570,
"best_exact": 85.49668874172185,
"best_exact_thresh": 0.0,
"best_f1": 91.9845699540379,
"best_f1_thresh": 0.0
}
| Model | EM | F1 score |
|---|---|---|
| 1238321 | - | 92.4* |
| 1239321 | 85.49 | 91.98 |
使用pipeline可以快速使用:
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="mrm8488/spanbert-finetuned-squadv1",
tokenizer="mrm8488/spanbert-finetuned-squadv1"
)
qa_pipeline({
'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately",
'question': "Who has been working hard for hugginface/transformers lately?"
})
由 Manuel Romero/@mrm8488 | LinkedIn 创建
在西班牙用 ♥ 制作