模型:
mrm8488/falcoder-7b
 
 Falcon-7b在CodeAlpaca 20k指令数据集上进行了微调,使用了QLoRA方法和 PEFT 库。
CodeAlpaca_20K : 包含用于对Code Alpaca模型进行微调的20K条指令跟随数据。
TBA
| Step | Training Loss | Validation Loss | 
|---|---|---|
| 100 | 0.798500 | 0.767996 | 
| 200 | 0.725900 | 0.749880 | 
| 300 | 0.669100 | 0.748029 | 
| 400 | 0.687300 | 0.742342 | 
| 500 | 0.579900 | 0.736735 | 
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
model_id = "mrm8488/falcoder-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
def generate(
        instruction,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        **kwargs
):
    prompt = instruction + "\n### Solution:\n"
    print(prompt)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Solution:")[1].lstrip("\n")
instruction = "Design a class for representing a person in Python."
print(generate(instruction))
 @misc {manuel_romero_2023,
    author       = { {Manuel Romero} },
    title        = { falcoder-7b (Revision e061237) },
    year         = 2023,
    url          = { https://huggingface.co/mrm8488/falcoder-7b },
    doi          = { 10.57967/hf/0789 },
    publisher    = { Hugging Face }
}