模型:
lmqg/flan-t5-large-squad-qg
这个模型是通过 lmqg 在 lmqg/qg_squad 上对问题生成任务进行微调得到的 google/flan-t5-large 的版本(数据集名称:default)。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-large-squad-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/flan-t5-large-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
| Score | Type | Dataset | |
|---|---|---|---|
| BERTScore | 90.78 | default | 12313321 |
| Bleu_1 | 60.18 | default | 12313321 |
| Bleu_2 | 44.36 | default | 12313321 |
| Bleu_3 | 34.68 | default | 12313321 |
| Bleu_4 | 27.72 | default | 12313321 |
| METEOR | 27.96 | default | 12313321 |
| MoverScore | 65.41 | default | 12313321 |
| ROUGE_L | 54.56 | default | 12313321 |
| Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 92.77 | default | 12313321 |
| QAAlignedF1Score (MoverScore) | 64.61 | default | 12313321 |
| QAAlignedPrecision (BERTScore) | 92.62 | default | 12313321 |
| QAAlignedPrecision (MoverScore) | 64.76 | default | 12313321 |
| QAAlignedRecall (BERTScore) | 92.94 | default | 12313321 |
| QAAlignedRecall (MoverScore) | 64.56 | default | 12313321 |
在微调过程中使用了以下超参数:
完整的配置可在 fine-tuning config file 找到。
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}