模型:
jonatasgrosman/wav2vec2-large-xlsr-53-persian
使用 Common Voice 6.1 的训练和验证数据对 facebook/wav2vec2-large-xlsr-53 进行了波斯语的优化。在使用此模型时,请确保您的语音输入采样率为16kHz。
感谢 OVHcloud 慷慨提供的GPU积分,此模型已经过优化。
训练时使用的脚本可以在此处找到: https://github.com/jonatasgrosman/wav2vec2-sprint
可以直接使用模型(无需语言模型),如下所示...
使用 HuggingSound 库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-persian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
编写自己的推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "fa"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
SAMPLES = 5
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
| Reference | Prediction |
|---|---|
| از مهمونداری کنار بکشم | از مهمانداری کنار بکشم |
| برو از مهرداد بپرس. | برو از ماقدعاد به پرس |
| خب ، تو چیكار می كنی؟ | خوب تو چیکار می کنی |
| مسقط پایتخت عمان در عربی به معنای محل سقوط است | مسقط پایتخت عمان در عربی به بعنای محل سقوط است |
| آه، نه اصلاُ! | اهنه اصلا |
| توانست | توانست |
| قصیده فن شعر میگوید ای دوستان | قصیده فن شعر میگوید ایدوستون |
| دو استایل متفاوت دارین | دوبوست داریل و متفاوت بری |
| دو روز قبل از کریسمس ؟ | اون مفتود پش پشش |
| ساعت های کاری چیست؟ | این توری که موشیکل خب |
可以使用以下方法评估波斯语的Common Voice测试数据上的模型。
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "fa"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
测试结果:
在下表中,我报告了模型的词错误率(WER)和字符错误率(CER)。我还对其他模型运行了上述评估脚本(于2021年4月22日)。请注意,下表可能显示与已报告的结果不同的结果,这可能是由于使用的其他评估脚本的某些特定性引起的。
| Model | WER | CER |
|---|---|---|
| jonatasgrosman/wav2vec2-large-xlsr-53-persian | 30.12% | 7.37% |
| m3hrdadfi/wav2vec2-large-xlsr-persian-v2 | 33.85% | 8.79% |
| m3hrdadfi/wav2vec2-large-xlsr-persian | 34.37% | 8.98% |
如果您想引用此模型,可以使用此引用:
@misc{grosman2021xlsr53-large-persian,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}ersian},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-persian}},
year={2021}
}