模型:
ikala/redpajama-3b-chat
任务:
数据集:
OpenAssistant/oasst1 databricks/databricks-dolly-15k anon8231489123/ShareGPT_Vicuna_unfiltered LIUM/tedlium theblackcat102/joke_explaination 3Atheblackcat102/joke_explaination 3ALIUM/tedlium 3Aanon8231489123/ShareGPT_Vicuna_unfiltered 3Adatabricks/databricks-dolly-15k 3AOpenAssistant/oasst1许可:
它基于RedPajama的3B模型,该模型在2023年4月12日之前收集到的助手对话人类示范中进行了微调。
在5120个序列长度上进行监督微调
两个特殊标记用于标记用户回合和助手回合的开始: <|prompter|> 和 <|assistant|> 。每个回合以一个 <|endoftext|> 标记结束。
输入提示示例:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
输入以 <|assistant|> 标记结束,表示模型应开始生成助手的回复。
| model | MMLU | BBH | Humaneval @10 |
|---|---|---|---|
| 12310321 | 24.6 | 29.3 | 4.8 |
| 12311321 | 31.4 | 30.2 | 0.0 |
| llama-7b (reference) | 30.9 | 27.6 | 10.3 |
命令: deepspeed trainer_sft.py --configs defaults redpajama-3b 数据集 --num_train_epochs 2 --deepspeed
数据:
datasets:
- wmt2019_zh-en:
max_val_set: 1000
max_train_set: 20000
- ted_trans_en-ja:
max_val_set: 1000
max_train_set: 20000
- ted_trans_zh-ja:
max_val_set: 1000
max_train_set: 20000
- ikala:
input_file_path: export_conversation_v4.4.jsonl
val_split: 0.05
- dolly15k:
val_split: 0.05
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk,zh,ja,th,ko"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- joke
- gsm8k
- webgpt
使用内部数据集 ikala ,如果要复现,请删除数据集
redpajama-3b:
redpajama-3b: dtype: fp16 log_dir: "redpajama_3b" learning_rate: 1e-5 model_name: saved_models/RedPajama-INCITE-Base-3B-v1 output_dir: ikala_v4_3b weight_decay: 0.0 max_length: 8196 warmup_steps: 2000 gradient_checkpointing: true gradient_accumulation_steps: 32 per_device_train_batch_size: 1 per_device_eval_batch_size: 2 eval_steps: 500 save_steps: 1000 num_train_epochs: 8 save_total_limit: 2 deepspeed_config: configs/zero3_config_sft.json
零配置:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}