模型:
flair/upos-multi-fast
这是Flair中附带的快速多语言通用词性标注模型。
F1得分:92.88(覆盖英语、德语、法语、意大利语、荷兰语、波兰语、西班牙语、瑞典语、丹麦语、挪威语、芬兰语和捷克语的12个UD Treebanks)
预测通用词性标签:
| tag | meaning | 
|---|---|
| ADJ | adjective | 
| ADP | adposition | 
| ADV | adverb | 
| AUX | auxiliary | 
| CCONJ | coordinating conjunction | 
| DET | determiner | 
| INTJ | interjection | 
| NOUN | noun | 
| NUM | numeral | 
| PART | particle | 
| PRON | pronoun | 
| PROPN | proper noun | 
| PUNCT | punctuation | 
| SCONJ | subordinating conjunction | 
| SYM | symbol | 
| VERB | verb | 
| X | other | 
基于 Flair embeddings 和LSTM-CRF。
需要: Flair (pip install flair)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/upos-multi-fast")
# make example sentence
sentence = Sentence("Ich liebe Berlin, as they say. ")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)
 这将产生以下输出:
Span [1]: "Ich" [− Labels: PRON (0.9999)] Span [2]: "liebe" [− Labels: VERB (0.9999)] Span [3]: "Berlin" [− Labels: PROPN (0.9997)] Span [4]: "," [− Labels: PUNCT (1.0)] Span [5]: "as" [− Labels: SCONJ (0.9991)] Span [6]: "they" [− Labels: PRON (0.9998)] Span [7]: "say" [− Labels: VERB (0.9998)] Span [8]: "." [− Labels: PUNCT (1.0)]
因此,在多语言句子“我爱柏林,就像他们说的那样”中,“我”和“they”被标记为代词(PRON),而“liebe”和“say”被标记为动词(VERB)。
使用以下Flair脚本训练此模型:
from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \
    UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH
from flair.embeddings import StackedEmbeddings, FlairEmbeddings
# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large)
corpus = MultiCorpus([
    UD_ENGLISH(in_memory=False),
    UD_GERMAN(in_memory=False),
    UD_DUTCH(in_memory=False),
    UD_FRENCH(in_memory=False),
    UD_ITALIAN(in_memory=False),
    UD_SPANISH(in_memory=False),
    UD_POLISH(in_memory=False),
    UD_CZECH(in_memory=False),
    UD_DANISH(in_memory=False),
    UD_SWEDISH(in_memory=False),
    UD_NORWEGIAN(in_memory=False),
    UD_FINNISH(in_memory=False),
])
# 2. what tag do we want to predict?
tag_type = 'upos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # contextual string embeddings, forward
    FlairEmbeddings('multi-forward-fast'),
    # contextual string embeddings, backward
    FlairEmbeddings('multi-backward-fast'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type,
                        use_crf=False)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/upos-multi-fast',
              train_with_dev=True,
              max_epochs=150)
 使用此模型时,请引用以下论文。
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
 Flair问题跟踪器可在此处 here 。