模型:
flair/pos-english-fast
这是随Flair一起发布的英语快速词性标注模型。
F1分数:98.10(Ontonotes)
预测细粒度词性标签:
| tag | meaning | 
|---|---|
| ADD | |
| AFX | Affix | 
| CC | Coordinating conjunction | 
| CD | Cardinal number | 
| DT | Determiner | 
| EX | Existential there | 
| FW | Foreign word | 
| HYPH | Hyphen | 
| IN | Preposition or subordinating conjunction | 
| JJ | Adjective | 
| JJR | Adjective, comparative | 
| JJS | Adjective, superlative | 
| LS | List item marker | 
| MD | Modal | 
| NFP | Superfluous punctuation | 
| NN | Noun, singular or mass | 
| NNP | Proper noun, singular | 
| NNPS | Proper noun, plural | 
| NNS | Noun, plural | 
| PDT | Predeterminer | 
| POS | Possessive ending | 
| PRP | Personal pronoun | 
| PRP$ | Possessive pronoun | 
| RB | Adverb | 
| RBR | Adverb, comparative | 
| RBS | Adverb, superlative | 
| RP | Particle | 
| SYM | Symbol | 
| TO | to | 
| UH | Interjection | 
| VB | Verb, base form | 
| VBD | Verb, past tense | 
| VBG | Verb, gerund or present participle | 
| VBN | Verb, past participle | 
| VBP | Verb, non-3rd person singular present | 
| VBZ | Verb, 3rd person singular present | 
| WDT | Wh-determiner | 
| WP | Wh-pronoun | 
| WP$ | Possessive wh-pronoun | 
| WRB | Wh-adverb | 
| XX | Unknown | 
基于 Flair embeddings 和LSTM-CRF。
需要: Flair (pip install flair)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/pos-english-fast")
# make example sentence
sentence = Sentence("I love Berlin.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)
 这将产生以下输出:
Span [1]: "I" [− Labels: PRP (1.0)] Span [2]: "love" [− Labels: VBP (0.9998)] Span [3]: "Berlin" [− Labels: NNP (0.9999)] Span [4]: "." [− Labels: . (0.9998)]
因此,在句子"I love Berlin"中,"I"被标记为代词(PRP),"love"被标记为动词(VBP),"Berlin"被标记为专有名词(NNP)。
以下Flair脚本用于训练此模型:
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
                "resources/tasks/onto-ner",
                column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
                tag_to_bioes="ner",
            )
# 2. what tag do we want to predict?
tag_type = 'pos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # contextual string embeddings, forward
    FlairEmbeddings('news-forward'),
    # contextual string embeddings, backward
    FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/pos-english-fast',
              train_with_dev=True,
              max_epochs=150)
 使用此模型时,请引用以下论文。
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
 Flair问题跟踪器位于 here 。