模型:
flair/ner-english-ontonotes-fast
这是英文的18类NER模型的快速版本,内置于 Flair 中。
F1-Score: 89.3(基于Ontonotes)
预测了18个标签:
| tag | meaning | 
|---|---|
| CARDINAL | cardinal value | 
| DATE | date value | 
| EVENT | event name | 
| FAC | building name | 
| GPE | geo-political entity | 
| LANGUAGE | language name | 
| LAW | law name | 
| LOC | location name | 
| MONEY | money name | 
| NORP | affiliation | 
| ORDINAL | ordinal value | 
| ORG | organization name | 
| PERCENT | percent value | 
| PERSON | person name | 
| PRODUCT | product name | 
| QUANTITY | quantity value | 
| TIME | time value | 
| WORK_OF_ART | name of work of art | 
基于 Flair embeddings 和LSTM-CRF。
需要: Flair (pip install flair)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast")
# make example sentence
sentence = Sentence("On September 1st George Washington won 1 dollar.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)
这将产生以下输出:
Span [2,3]: "September 1st" [− Labels: DATE (0.9655)] Span [4,5]: "George Washington" [− Labels: PERSON (0.8243)] Span [7,8]: "1 dollar" [− Labels: MONEY (0.8022)]
因此,实体“September 1st”(标记为日期)、“George Washington”(标记为人物)和“1美元”(标记为货币)出现在句子“On September 1st George Washington won 1 dollar”中。
使用以下Flair脚本对此模型进行训练:
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
                "resources/tasks/onto-ner",
                column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
                tag_to_bioes="ner",
            )
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # GloVe embeddings
    WordEmbeddings('en-crawl'),
    # contextual string embeddings, forward
    FlairEmbeddings('news-forward-fast'),
    # contextual string embeddings, backward
    FlairEmbeddings('news-backward-fast'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/ner-english-ontonotes-fast',
              train_with_dev=True,
              max_epochs=150)
在使用此模型时,请引用以下论文。
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
Flair问题跟踪器可在 here 中找到。