模型:
facebook/timesformer-base-finetuned-ssv2
TimeSformer模型在 Something Something v2 数据集上进行了预训练。它是由Tong等人在 this repository 年的论文中提出的,并于 this repository 年首次发布。
免责声明:发布TimeSformer的团队没有为该模型编写模型卡片,因此该模型卡片是由 fcakyon 编写的。
您可以使用原始模型对视频进行分类,分为174个可能的Something Something v2标签之一。
以下是使用此模型对视频进行分类的方法:
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import numpy as np
import torch
video = list(np.random.randn(8, 3, 224, 224))
processor = AutoImageProcessor.from_pretrained("facebook/timesformer-base-finetuned-ssv2")
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-ssv2")
inputs = processor(images=video, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
有关更多代码示例,请参阅 documentation 。
@inproceedings{bertasius2021space,
title={Is Space-Time Attention All You Need for Video Understanding?},
author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo},
booktitle={International Conference on Machine Learning},
pages={813--824},
year={2021},
organization={PMLR}
}