模型:
dandelin/vilt-b32-finetuned-vqa
Vision-and-Language Transformer(ViLT)模型在 VQAv2 上进行了微调。这个模型是由Kim等人在 ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision 论文中提出并在 this repository 首次发布的。
免责声明:发布ViLT的团队并未为该模型撰写模型卡,因此本模型卡是由Hugging Face团队撰写的。
您可以使用原始模型进行视觉问答。
以下是在PyTorch中使用此模型的方法:
from transformers import ViltProcessor, ViltForQuestionAnswering
import requests
from PIL import Image
# prepare image + question
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = "How many cats are there?"
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
print("Predicted answer:", model.config.id2label[idx])
 (待定)
(待定)
(待定)
(待定)
@misc{kim2021vilt,
      title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, 
      author={Wonjae Kim and Bokyung Son and Ildoo Kim},
      year={2021},
      eprint={2102.03334},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}