模型:
dandelin/vilt-b32-finetuned-coco
Vision-and-Language Transformer (ViLT) 模型在 COCO 上进行了微调。它是由Kim等人在论文 ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision 中提出,并首次在 this repository 中发布的。
免责声明:ViLT发布团队没有为该模型编写模型卡,因此该模型卡是由Hugging Face团队编写的。
您可以将该模型用于图像和文本检索。
以下是如何在PyTorch中使用该模型的示例:
from transformers import ViltProcessor, ViltForImageAndTextRetrieval
import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco")
model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
scores = dict()
for text in texts:
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
scores[text] = outputs.logits[0, :].item()
(待完成)
(待完成)
(待完成)
(待完成)
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}