这是一个在 RuSentiment 上训练的 DeepPavlov/rubert-base-cased-conversational 模型。
0: NEUTRAL 1: POSITIVE 2: NEGATIVE
import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment', return_dict=True)
@torch.no_grad()
def predict(text):
    inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**inputs)
    predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
    predicted = torch.argmax(predicted, dim=1).numpy()
    return predicted
 A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment:用于俄语社交媒体的增强情感分析数据集。COLING 2018会议论文。