模型:
OpenAssistant/stablelm-7b-sft-v7-epoch-3
这是 Open-Assistant 项目的第7次迭代的英文监督细调(SFT)模型。它基于一个在2023年4月12日之前通过 https://open-assistant.io/ 人类反馈Web应用程序收集的助手对话的人类示范的StableLM 7B进行了微调。
有两个特殊令牌用于标记用户和助手交替的开始:<|prompter|>和<|assistant|>。每个交替以<|endoftext|>令牌结束。
输入提示示例:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
输入以<|assistant|>令牌结尾,以表示模型应开始生成助手的回复。
命令:deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed
数据:
oasst-mix:
save_strategy: epoch
sort_by_length: false
use_custom_sampler: false
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
stablelm:
stablelm-7b: dtype: fp16 log_dir: stablelm_log_7b model_name: stabilityai/stablelm-base-alpha-7b output_dir: stablelm_7b max_length: 4096 warmup_steps: 100 gradient_checkpointing: true gradient_accumulation_steps: 2 per_device_train_batch_size: 4 per_device_eval_batch_size: 4 eval_steps: 100 save_steps: 500 num_train_epochs: 4 save_total_limit: 4 use_flash_attention: true
零配置:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}