模型:
OpenAssistant/pythia-12b-pre-v8-12.5k-steps
注意:内部模型,尚未准备好使用
这是一个中间模型,用作进一步 pythia 12b SFT-8 实验的基础模型。它是在更广泛的指令调整数据集上进行训练的,训练步骤超过12.5k,批次大小为128,上下文大小为2048。gpt4all 数据集有 "作为语言模型" 的污染(>1.8k 条目)。我们后来添加了过滤,但是该模型(pre-v8)是在未经筛选的原始 gpt4all 数据集上训练的。
数据集:
pretrain:
num_train_epochs: 1
weight_decay: 0.0
use_custom_sampler: true
sort_by_length: false
datasets:
- gpteacher_roleplay:
val_split: 0.05
- red_pajama:
fraction: 0.25
max_val_set: 1000
- wizardlm_70k:
val_split: 0.05
max_val_set: 500
- joke:
val_split: 0.05
- poem_instructions:
val_split: 0.025
- oa_stackexchange:
val_split: 0.05
fraction: 0.1
max_val_set: 1000
- tell_a_joke:
val_split: 0.05
max_val_set: 250
- webgpt:
val_split: 0.05
max_val_set: 250
- gpt4all:
val_split: 0.01
max_val_set: 1000
- alpaca_gpt4:
val_split: 0.025
max_val_set: 250
- code_alpaca:
val_split: 0.05
max_val_set: 250
- vicuna:
max_val_set: 250
- oig_file:
source_url: https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl
max_count: 10000
min_length: 250
val_split: 0.05
max_val_set: 250
- minimath:
val_split: 0.05
- humaneval_mbpp_codegen_qa:
val_split: 0.05
- humaneval_mbpp_testgen_qa:
val_split: 0.05
- grade_school_math_instructions:
val_split: 0.05
- recipes:
val_split: 0.05
- cmu_wiki_qa:
val_split: 0.05
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- prosocial_dialogue:
fraction: 0.1
max_val_set: 250
- explain_prosocial:
fraction: 0.075
max_val_set: 250
- soda:
fraction: 0.25
max_val_set: 1000
- oa_leet10k:
val_split: 0.05
max_val_set: 250
- dolly15k:
val_split: 0.05
max_val_set: 300
Pythia:
pythia-12b-pretrain: dtype: fp16 log_dir: "pythia_log_12b" learning_rate: 6e-6 model_name: EleutherAI/pythia-12b-deduped output_dir: pythia_model_12b weight_decay: 0.0 max_length: 2048 warmup_steps: 100 gradient_checkpointing: true gradient_accumulation_steps: 4 per_device_train_batch_size: 4 per_device_eval_batch_size: 4 eval_steps: 251 save_steps: 500 num_train_epochs: 1 save_total_limit: 2 deepspeed_config: configs/zero_config_pretrain.json
使用的命令: deepspeed trainer_sft.py --show_dataset_stats --configs defaults pythia-12b-pretrain pretrain --cache_dir .cache/ --output_dir .saved/pythia-12b-super-pretrain2 --deepspeed