模型:
OFA-Sys/ofa-huge
这是OFA预训练模型的巨大版本。OFA是一个统一的多模态预训练模型,将多模态(例如跨模态、视觉、语言)和任务(如图像生成、视觉定位、图像字幕、图像分类、文本生成等)统一到一个简单的序列到序列学习框架中。
该目录包含4个文件,分别是config.json(包含模型配置信息)、vocab.json和merge.txt(用于OFA分词器)、以及pytorch_model.bin(包含模型权重)。不用担心Fairseq和transformers之间的不匹配问题,因为我们已经解决了这个问题。
要在transformers中使用它,请参考 https://github.com/OFA-Sys/OFA/tree/feature/add_transformers 。安装transformers并下载如下所示的模型。
git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-huge
然后,将OFA-huge的路径指定为ckpt_dir,并准备一个用于下面的测试示例的图像。还要确保你的环境中安装了pillow和torchvision。
>>> from PIL import Image
>>> from torchvision import transforms
>>> from transformers import OFATokenizer, OFAModel
>>> from generate import sequence_generator
>>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
>>> resolution = 480
>>> patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)
])
>>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
>>> txt = " what does the image describe?"
>>> inputs = tokenizer([txt], return_tensors="pt").input_ids
>>> img = Image.open(path_to_image)
>>> patch_img = patch_resize_transform(img).unsqueeze(0)
# using the generator of fairseq version
>>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True)
>>> generator = sequence_generator.SequenceGenerator(
tokenizer=tokenizer,
beam_size=5,
max_len_b=16,
min_len=0,
no_repeat_ngram_size=3,
)
>>> data = {}
>>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])}
>>> gen_output = generator.generate([model], data)
>>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))]
# using the generator of huggingface version
>>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False)
>>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3)
>>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))