模型:

MarcBrun/ixambert-finetuned-squad

英文

ixambert-base-cased针对问答 (QA) 进行微调

这是一个基本实现的多语言模型 "ixambert-base-cased" ,针对SQuAD v1.1进行了微调,能够用英语、西班牙语和巴斯克语回答基本的事实性问题。

概述

  • 语言模型:ixambert-base-cased
  • 语言:英语、西班牙语和巴斯克语
  • 下游任务:提取型问答(Extractive QA)
  • 训练数据:SQuAD v1.1
  • 评估数据:SQuAD v1.1
  • 基础设施:1x GeForce RTX 2080

输出

该模型输出问题的答案、答案在原始上下文中的起始和结束位置,以及表示该文本片段是正确答案的概率分数。例如:

{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}

如何使用

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "MarcBrun/ixambert-finetuned-squad"

# To get predictions
context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820"
question = "When was Florence Nightingale born?"
qa = pipeline("question-answering", model=model_name, tokenizer=model_name)
pred = qa(question=question,context=context)

# To load the model and tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

超参数

batch_size = 8
n_epochs = 3
learning_rate = 2e-5
optimizer = AdamW
lr_schedule = linear
max_seq_len = 384
doc_stride = 128