模型:
MarcBrun/ixambert-finetuned-squad
这是一个基本实现的多语言模型 "ixambert-base-cased" ,针对SQuAD v1.1进行了微调,能够用英语、西班牙语和巴斯克语回答基本的事实性问题。
该模型输出问题的答案、答案在原始上下文中的起始和结束位置,以及表示该文本片段是正确答案的概率分数。例如:
{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128