模型:
MarcBrun/ixambert-finetuned-squad-eu-en
这是在SQuAD v1.1和巴斯克语的实验版本SQuAD1.1(原始SQuAD1.1的1/3大小)上微调的多语言模型ixambert-base-cased的基本实现,能够回答英语、西班牙语和巴斯克语的基本事实问题。
该模型输出问题的答案,答案在原始上下文中的起始和结束位置,以及该文本片段作为正确答案的概率得分。例如:
{'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'}
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu-en" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128