英文

opus-mt-tc-big-zle-fr

神经机器翻译模型,用于从东斯拉夫语言(zle)翻译成法语(fr)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型广泛可用和可访问于世界上许多语言。所有模型都是最初使用令人惊叹的 Marian NMT 框架进行训练的,这是一个用纯C++编写的高效NMT实现。使用transformers库(由huggingface提供)将这些模型转换为pyTorch。训练数据来自 OPUS ,并且训练流程采用了 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

一个简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Подавай блюдо на тарелке.",
    "Операція не може чекати."
]

model_name = "pytorch-models/opus-mt-tc-big-zle-fr"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Servez le plat dans l'assiette.
#     L'opération ne peut pas attendre.

您还可以使用transformers pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-fr")
print(pipe("Подавай блюдо на тарелке."))

# expected output: Servez le plat dans l'assiette.

基准测试

langpair testset chr-F BLEU #sent #words
bel-fra tatoeba-test-v2020-07-28-v2021-08-07 0.65415 46.4 283 2005
multi-fra tatoeba-test-v2020-07-28-v2021-08-07 0.68422 52.4 10000 66671
rus-fra tatoeba-test-v2020-07-28-v2021-08-07 0.68699 51.8 11490 80573
ukr-fra tatoeba-test-v2020-07-28-v2021-08-07 0.67887 50.7 10035 63222
rus-fra newstest2012 0.53679 25.3 3003 78011
rus-fra newstest2013 0.56211 29.7 3000 70037

致谢

该工作得到 European Language Grid 的支持,如 pilot project 2866 所示,以及 FoTran project 的支持,该计划由欧洲研究理事会(ERC)在欧盟的Horizon 2020研究和创新计划(授权协议编号771113)下资助,并且 MeMAD project 得到欧盟Horizon 2020研究和创新计划在授权协议编号780069下的资助。我们还对 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施表示感谢。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:1bdabf7
  • 转换时间:Wed Mar 23 22:45:20 EET 2022
  • 转换机器:LM0-400-22516.local