英文

opus-mt-tc-big-sh-en

神经机器翻译模型,用于从塞尔维亚-克罗地亚语(sh)翻译到英语(en)。

此模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上许多语言中广泛可用和易于访问。所有模型都是使用纯C++编写的高效NMT实现框架 Marian NMT 进行初始训练的。这些模型已经使用huggingface的transformers库转换为pyTorch。训练数据来自 OPUS ,训练流程使用 OPUS-MT-train 的流程。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

使用方法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Ispostavilo se da je istina.",
    "Ovaj vikend imamo besplatne pozive."
]

model_name = "pytorch-models/opus-mt-tc-big-sh-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Turns out it's true.
#     We got free calls this weekend.

您还可以使用transformers pipelines使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-sh-en")
print(pipe("Ispostavilo se da je istina."))

# expected output: Turns out it's true.

基准测试

langpair testset chr-F BLEU #sent #words
bos_Latn-eng tatoeba-test-v2021-08-07 0.80010 66.5 301 1826
hbs-eng tatoeba-test-v2021-08-07 0.71744 56.4 10017 68934
hrv-eng tatoeba-test-v2021-08-07 0.73563 58.8 1480 10620
srp_Cyrl-eng tatoeba-test-v2021-08-07 0.68248 44.7 1580 10181
srp_Latn-eng tatoeba-test-v2021-08-07 0.71781 58.4 6656 46307
hrv-eng flores101-devtest 0.63948 37.1 1012 24721

致谢

该工作得到 European Language Grid 的支持作为 pilot project 2866 ,得到 FoTran project 的支持,该项目由欧洲研究理事会(ERC)在欧洲联盟的“Horizon 2020”研究与创新计划(授权协议号:771113)以及 MeMAD project 的支持,该项目由欧洲联盟的“Horizon 2020”研究与创新计划(授权协议号:780069)资助。我们还感谢芬兰的 CSC -- IT Center for Science 提供慷慨的计算资源和IT基础设施。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:3405783
  • 转换时间:2022年4月13日19:21:10 EEST
  • 转换机器:LM0-400-22516.local