英文

opus-mt-tc-big-lt-en

神经机器翻译模型,用于将立陶宛语(lt)翻译为英语(en)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在全球范围内广泛可用和可访问。所有模型都是使用 Marian NMT 框架在纯C++中编写的高效NMT实现进行原始训练的。这些模型已经使用huggingface的transformers库转换为pyTorch。训练数据来自 OPUS ,并且训练流程使用了 OPUS-MT-train 的过程。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

一个简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Katė sedėjo ant kėdės.",
    "Jukiko mėgsta bulves."
]

model_name = "pytorch-models/opus-mt-tc-big-lt-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     The cat sat on a chair.
#     Yukiko likes potatoes.

您还可以使用transformers pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-lt-en")
print(pipe("Katė sedėjo ant kėdės."))

# expected output: The cat sat on a chair.

基准测试

langpair testset chr-F BLEU #sent #words
lit-eng tatoeba-test-v2021-08-07 0.74881 61.6 2528 17855
lit-eng flores101-devtest 0.60662 34.3 1012 24721
lit-eng newsdev2019 0.59995 32.9 2000 49312
lit-eng newstest2019 0.61742 32.3 1000 25878

致谢

这项工作得到 European Language Grid pilot project 2866 的支持,由 FoTran project 提供资金,这是欧洲研究委员会(ERC)根据欧洲联盟的Horizon 2020研究和创新计划(授权协议编号:771113)和 MeMAD project 提供的资金支持,这是欧洲联盟的Horizon 2020研究和创新计划根据授权协议编号780069提供的资金支持。我们还感谢芬兰的 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:3405783
  • 转换时间:2022年4月13日19:55:51 EEST
  • 转换机器:LM0-400-22516.local