英文

opus-mt-tc-big-en-zle

神经机器翻译模型,用于将英语(en)翻译为东斯拉夫语言(zle)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上许多语言中广泛可用和易于访问。所有模型都是使用神奇的 C++ 纯编写的高效 NMT 实现 Marian NMT 在训练初期进行训练的。使用了transformers库由huggingface将这些模型转换为pyTorch。训练数据取自 OPUS ,训练流水线使用 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

这是一个具有多个目标语言的多语言翻译模型。需要使用表单中的句子初始语言标记作为>>id<<(id = 有效目标语言ID),例如>>bel<<

用法

一个简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>rus<< Are they coming as well?",
    ">>rus<< I didn't let Tom do what he wanted to do."
]

model_name = "pytorch-models/opus-mt-tc-big-en-zle"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Они тоже приедут?
#     Я не позволил Тому сделать то, что он хотел.

您还可以使用transformers流程使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-zle")
print(pipe(">>rus<< Are they coming as well?"))

# expected output: Они тоже приедут?

基准测试

langpair testset chr-F BLEU #sent #words
eng-bel tatoeba-test-v2021-08-07 0.50345 24.9 2500 16237
eng-rus tatoeba-test-v2021-08-07 0.66182 45.5 19425 134296
eng-ukr tatoeba-test-v2021-08-07 0.60175 37.7 13127 80998
eng-bel flores101-devtest 0.42078 11.2 1012 24829
eng-rus flores101-devtest 0.59654 32.7 1012 23295
eng-ukr flores101-devtest 0.60131 32.1 1012 22810
eng-rus newstest2012 0.62842 36.8 3003 64790
eng-rus newstest2013 0.54627 26.9 3000 58560
eng-rus newstest2014 0.68348 43.5 3003 61603
eng-rus newstest2015 0.62621 34.9 2818 55915
eng-rus newstest2016 0.60595 33.1 2998 62014
eng-rus newstest2017 0.64249 37.3 3001 60253
eng-rus newstest2018 0.61219 32.9 3000 61907
eng-rus newstest2019 0.57902 31.8 1997 48147
eng-rus newstest2020 0.52939 25.5 2002 47083
eng-rus tico19-test 0.59314 33.7 2100 55843

致谢

该工作得到 European Language Grid pilot project 2866 的支持,由 FoTran project 资助,该项目由欧洲研究理事会 (ERC) 在欧洲联盟的Horizon 2020研究和创新计划 (授予协议编号771113) 下实施,以及 MeMAD project ,由欧盟的Horizon 2020研究和创新计划在授予协议编号780069下实施。我们还感谢 CSC -- IT Center for Science ,芬兰为我们提供慷慨的计算资源和IT基础设施。

模型转换信息

  • transformers版本: 4.16.2
  • OPUS-MT git哈希: 1bdabf7
  • 转换时间: Thu Mar 24 01:58:40 EET 2022
  • 转换机器: LM0-400-22516.local