模型:
Blaxzter/LaBSE-sentence-embeddings
LaBSE的副本,返回句子嵌入(pooler_output)并实现缓存
原模型卡片:
语言不可知的BERT句子编码器(LaBSE)是一个基于BERT训练的模型,用于109种语言的句子嵌入。预训练过程将掩码语言建模与翻译语言建模相结合。该模型可用于获取多语言句子嵌入和双文本检索。
该模型是从TF Hub的v2模型迁移而来,使用基于字典的输入。两个版本的模型产生的嵌入是 equivalent .
使用模型:
import torch
from transformers import BertModel, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
model = BertModel.from_pretrained("setu4993/LaBSE")
model = model.eval()
english_sentences = [
"dog",
"Puppies are nice.",
"I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
english_outputs = model(**english_inputs)
要获取句子嵌入,请使用池化器输出:
english_embeddings = english_outputs.pooler_output
其他语言的输出:
italian_sentences = [
"cane",
"I cuccioli sono carini.",
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
]
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
italian_outputs = model(**italian_inputs)
japanese_outputs = model(**japanese_inputs)
italian_embeddings = italian_outputs.pooler_output
japanese_embeddings = japanese_outputs.pooler_output
对于句子之间的相似度计算,建议先进行L2范数处理:
import torch.nn.functional as F
def similarity(embeddings_1, embeddings_2):
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
return torch.matmul(
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
)
print(similarity(english_embeddings, italian_embeddings))
print(similarity(english_embeddings, japanese_embeddings))
print(similarity(italian_embeddings, japanese_embeddings))
数据、训练、评估和性能指标的详细信息可在 original paper 中找到。
@misc{feng2020languageagnostic,
title={Language-agnostic BERT Sentence Embedding},
author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang},
year={2020},
eprint={2007.01852},
archivePrefix={arXiv},
primaryClass={cs.CL}
}