数据集:
movie_rationales
任务:
语言:
计算机处理:
monolingual大小:
1K<n<10K语言创建人:
found批注创建人:
crowdsourced源数据集:
original许可:
电影理由数据集包含了电影评论的人工标注理由。
'validation'的一个例子如下所示。
{
    "evidences": ["Fun movie"],
    "label": 1,
    "review": "Fun movie\n"
}
 
  所有拆分的数据字段都相同。
default| name | train | validation | test | 
|---|---|---|---|
| default | 1600 | 200 | 199 | 
@inproceedings{deyoung-etal-2020-eraser,
    title = "{ERASER}: {A} Benchmark to Evaluate Rationalized {NLP} Models",
    author = "DeYoung, Jay  and
      Jain, Sarthak  and
      Rajani, Nazneen Fatema  and
      Lehman, Eric  and
      Xiong, Caiming  and
      Socher, Richard  and
      Wallace, Byron C.",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.408",
    doi = "10.18653/v1/2020.acl-main.408",
    pages = "4443--4458",
}
@InProceedings{zaidan-eisner-piatko-2008:nips,
  author    =  {Omar F. Zaidan  and  Jason Eisner  and  Christine Piatko},
  title     =  {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
  booktitle =  {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
  month     =  {December},
  year      =  {2008}
}
 
  感谢 @thomwolf , @patrickvonplaten , @lewtun 添加了该数据集。