模型:
vinvino02/glpn-nyu
国际通用本地路径网络(GLPN)模型在NYUv2上进行了微调,用于单目深度估计。该模型由Kim等人在 Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth 论文中介绍,并在 this repository 中首次发布。
免责声明:发布GLPN模型的团队未为此模型编写模型卡,因此此模型卡是由Hugging Face团队编写的。
GLPN使用SegFormer作为骨干网络,并在顶部添加了一个轻量级头部用于深度估计。
您可以使用原始模型进行单目深度估计。查看 model hub 以查找您感兴趣的任务的微调版本。
以下是如何使用此模型:
from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation
import torch
import numpy as np
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = GLPNFeatureExtractor.from_pretrained("vinvino02/glpn-nyu")
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
# visualize the prediction
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
有关更多代码示例,请参阅 documentation 。
@article{DBLP:journals/corr/abs-2201-07436,
author = {Doyeon Kim and
Woonghyun Ga and
Pyunghwan Ahn and
Donggyu Joo and
Sehwan Chun and
Junmo Kim},
title = {Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth},
journal = {CoRR},
volume = {abs/2201.07436},
year = {2022},
url = {https://arxiv.org/abs/2201.07436},
eprinttype = {arXiv},
eprint = {2201.07436},
timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}