模型:

timm/volo_d2_384.sail_in1k

英文

volo_d2_384.sail_in1k模型卡片

一个VOLO(Vision Outlooker)图像分类模型。作者利用ImageNet-1k进行训练,并进行了标签化处理。

模型细节

  • 模型类型:图像分类/特征骨干
  • 模型统计数据:
    • 参数数量(百万): 58.9
    • GMACs: 46.2
    • 激活层数量(百万): 184.5
    • 图像尺寸: 384 x 384
  • 相关论文:
  • 数据集: ImageNet-1k
  • 原始数据: https://github.com/sail-sg/volo

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('volo_d2_384.sail_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'volo_d2_384.sail_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 577, 512) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

引用

@article{yuan2022volo,
  title={Volo: Vision outlooker for visual recognition},
  author={Yuan, Li and Hou, Qibin and Jiang, Zihang and Feng, Jiashi and Yan, Shuicheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022},
  publisher={IEEE}
}