模型:
timm/resnetv2_50x3_bit.goog_in21k_ft_in1k
任务:
许可:
一个 ResNet-V2-BiT(带有预激活 ResNet 的大规模迁移)图像分类模型。由论文作者在 ImageNet-21k 上进行预训练,并在 ImageNet-1k 上进行微调。
此模型使用:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('resnetv2_50x3_bit.goog_in21k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'resnetv2_50x3_bit.goog_in21k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 192, 224, 224]) # torch.Size([1, 768, 112, 112]) # torch.Size([1, 1536, 56, 56]) # torch.Size([1, 3072, 28, 28]) # torch.Size([1, 6144, 14, 14]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'resnetv2_50x3_bit.goog_in21k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 6144, 14, 14) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在 timm 中探索此模型的数据集和运行时指标 model results .
@inproceedings{Kolesnikov2019BigT, title={Big Transfer (BiT): General Visual Representation Learning}, author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, booktitle={European Conference on Computer Vision}, year={2019} }
@article{He2016, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Identity Mappings in Deep Residual Networks}, journal = {arXiv preprint arXiv:1603.05027}, year = {2016} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }